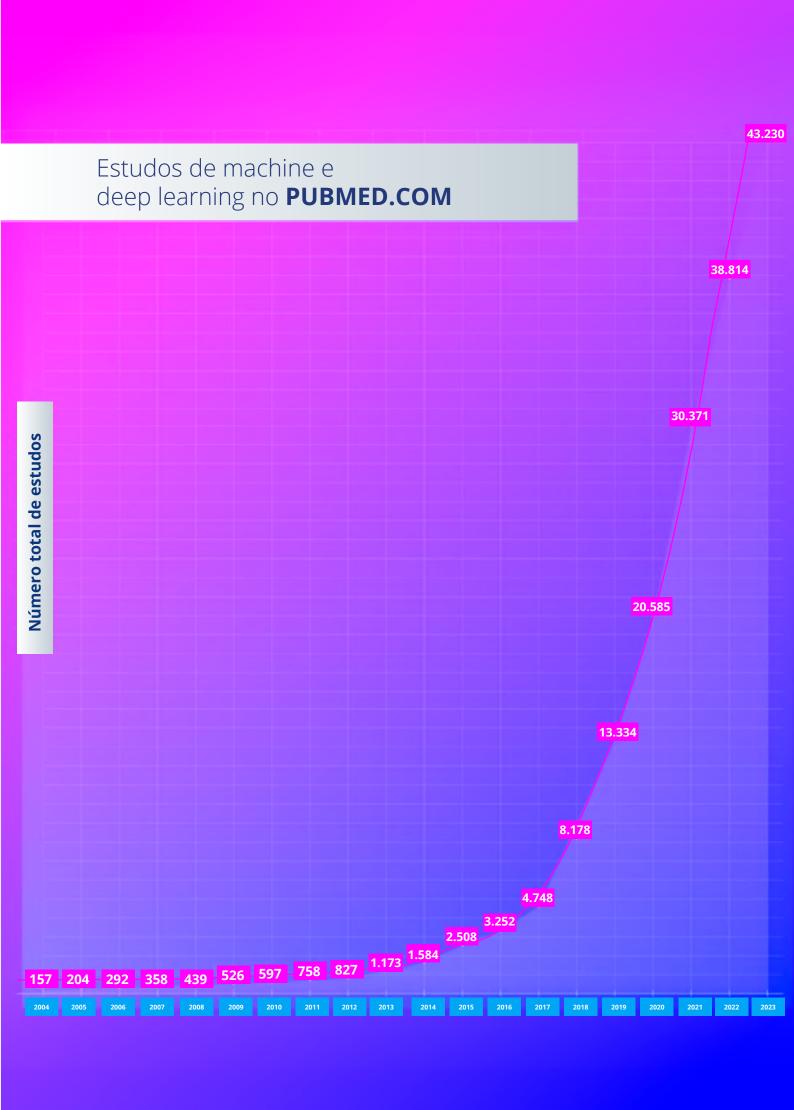

Guia de Inteligência Artificial para a Saúde

CONTEÚDO

Parte I. PRINCÍPIOS BÁSICOS DA INTELIGÊNCIA ARTIFICIAL	2
Inteligência Artificial: uma referência para a inovação	
• Medos e expectativas sobre a IA	
· A outra extremidade positiva do espectro	
· Que comece a busca por visões equilibradas sobre a IA	
· O que é Inteligência Artificial?	
• Estreita, geral ou super?	
O que você precisa para desenvolver IA?	
Análise de dados, Machine Learning e Deep Learning - métodos de ensino	
de algoritmos	
 Como a lA aprende Dados em saúde 	
 Uma breve história e o estado atual dos registros médicos eletrônicos Por que precisamos da ajuda da IA quando se trata de dados de saúde? 	
roi que precisamos da ajuda da iA quando se trata de dados de sadde:	
Parte II. APLICANDO INTELIGÊNCIA ARTIFICIAL NA SAÚDE	20
 Gestão de dados de saúde 	
Desenho da via de tratamento	
Transformando diagnósticos	
Assistência e administração de saúde	
Gestão de pacientes	
Medicina de precisão	
· Apoiar a indústria farmacêutica: criação de medicamentos e ensaios clínicos	
Algoritmos aprovados pela FDA na área da saúde	
Parte III. DESAFIOS DA INTELIGÊNCIA ARTIFICIAL	39
• Equívocos e exageros	
· Limitações tecnológicas da IA	
• Limitações dos dados médicos disponíveis	
· O trabalho indispensável dos anotadores de dados	
· Conjuntos de dados de julgamento e preconceito de IA na área da saúde	
A necessidade de regular a IA	
• A ética da IA	
Você poderia processar algoritmos de diagnóstico ou robôs médicos no futuro?	
Os algoritmos deveriam imitar a empatia?	
• A IA poderia resolver a crise de recursos humanos na área da saúde?	
Parte IV. PROFISSIONAIS MÉDICOS, IA E A ARTE DA MEDICINA	59

PRINCÍPIOS BÁSICOS DA INTELIGÊNCIA ARTIFICIAL

Inteligência Artificial: um ponto de referência para a inovação


O ano de virada da Inteligência Artificial no mundo médico foi 2023. Embora tenhamos previsto por anos que a lA transformaria a saúde, essa revolução — que durante muito tempo parecia uma vaga promessa — de repente se tornou realidade.

E isso não foi trazido por uma nova tecnologia inovadora. Para determinar por que a IA generativa se tornou um sucesso tão grande no ano passado, precisamos procurar a explicação em torno do acesso público. Afinal, a IA (e a IA na medicina) não é exatamente nova.

Nos últimos anos, a Inteligência Artificial (IA) evoluiu de uma promessa futurista para um ponto de referência inevitável para a inovação emergente das empresas tecnológicas. Mas foi apenas uma questão de tempo até que a importância estratégica da IA fosse reconhecida por outros domínios que não a indústria tecnológica.

Na verdade, essa "febre da IA" transbordou da indústria tecnológica para a política, com governos de todo o mundo voltando a atenção ao seu potencial. Isso até levou à corrida visível da IA entre países, em particular entre a China e o Ocidente, mas também ocasionou uma maior colaboração internacional através de acordos intergovernamentais e medidas políticas para garantir o desenvolvimento e o uso responsável da IA. É o caso da Parceria Global sobre Inteligência Artificial (GPAI), criada conjuntamente por 15 governos e pela União Europeia em 2020. Hoje, os 29 membros do GPAI são Argentina, Austrália, Bélgica, Brasil, Canadá, República Checa, Dinamarca, França, Alemanha, Índia, Irlanda, Israel, Itália, Japão, Coreia do Sul, México, Holanda, Nova Zelândia, Polônia, Senegal, Sérvia, Singapura, Eslovênia, Espanha, Suécia, Turquia, Reino Unido, Estados Unidos e União.

Como tal, grandes modelos de linguagem, aprendizagem profunda, aprendizagem automática, algoritmos inteligentes e outros termos relativos à IA tonaram-se comuns em praticamente todas as esferas da sociedade. Em suma, a tecnologia começou a remodelar o mundo tal como o conhecemos.

Hoje em dia, a tecnologia é manchete regular pela sua aplicação em diversos setores, desde finanças até educação, e também está agitando o campo das ciências biológicas. Por exemplo, o **número de estudos de ciências da vida publicados sobre IA aumentou de 1.600 em 2010 para 7.300 em 2020, e para quase 25.000 no último ano.** Esses algoritmos não se limitam aos laboratórios, mas também são usados na prática, como as centenas de startups que usam IA apenas na descoberta de medicamentos.

A lA se tornou a palavra da moda no setor de startups e a saúde é um dos principais alvos das inovações. Com esse interesse crescente, analistas preveem que o tamanho do mercado global de **IA na área da saúde disparará para 187,95 milhões de dólares em 2030.**

No entanto, com os olhos de todos voltados para o campo da IA, o fator hype entra em jogo, com notícias e empresas com fins lucrativos inflando o potencial da inteligência artificial. Por exemplo, houve um relato sobre como o Facebook encerrou um experimento de IA porque os chatbots "desenvolveram sua própria linguagem". Este é apenas um entre

muitos artigos semelhantes que alimentam os temores de que a lA se torne consciente e aniquile a raça humana.

No ano passado, figuras como Tristan Harris espalharam o medo, Harari afirmou que isso é ainda pior do que a guerra nuclear, grandes empresas de tecnologia e magnatas pediram uma moratória de seis meses no desenvolvimento de grandes modelos linguísticos (embora seja claro que nações como a China não irão travar o seu progresso), os países proibiram-no, e o Vale do Silício se dividiu em frações.

Além de arrecadar receitas publicitárias, esses artigos que induzem cliques também funcionam para afastar o interesse do campo da IA, que tem o potencial de melhorar os cuidados de saúde de inúmeras maneiras, eliminando a fadiga dos alarmes para revolucionar a documentação clínica.

Como tal, torna-se cada vez mais importante compreender as possibilidades e limites da IA, primeiro obtendo uma compreensão sólida do que constitui uma inteligência artificial. Para isso, lançamos este e-book como um guia completo com foco em IA na área da saúde.

Medos e expectativas sobre IA

"A Inteligência Artificial está gerando capacidades impressionantes e possibilidades alarmantes", disse António Guterres, Secretário-Geral da ONU, durante o 75° aniversário das Nações Unidas. Desde que a IA entrou na narrativa pública nos últimos anos, a tecnologia tem sido tratada principalmente de acordo com os dois extremos de que Guterres falou: a fonte do mal supremo visando a destruição da humanidade ou os meios para resolver todos os problemas na Terra. O Secretário-Geral da ONU acrescentou em seu discurso que "as armas letais autônomas — máquinas com o poder de matar por conta própria, sem julgamento e responsabilização humana — estão nos levando para um território moral e político inaceitável".

Outras figuras proeminentes expressaram sentimentos semelhantes. O falecido Stephen Hawking disse a famosa frase: "o desenvolvimento da inteligência artificial plena poderia significar o fim da raça humana". Em 2020, Elon Musk disse numa entrevista ao New York Times que, depois de trabalhar com IA na Tesla, ele pode dizer com segurança que estamos num caminho em que tais algoritmos serão muito mais espertos que os humanos. Em uma entrevista mais recente, ele previu que isso aconteceria já em 2025.

Musk acrescentou que sua "principal preocupação" é o laboratório de IA DeepMind, de propriedade do Google. "Apenas a natureza da IA que eles estão construindo é aquela que esmaga todos os humanos em todos os jogos", disse ele. "Quero dizer, é basicamente o enredo dos Jogos de Guerra",

Jogos de Guerra e outras histórias de ficção científica também levam os sentimentos sobre a IA ao extremo negativo. Essas interpretações artísticas são completas na representação de robôs usurpando humanos, como a Skynet do Exterminador do Futuro, decidida a nos exterminar, ou a humanidade sendo escravizada em Matrix. Para evitar que tais cenários apocalípticos se materializem, Elon Musk e outros apoiam organizações como o Future of Life Institute, que trabalham para manter a IA segura e benéfica para a humanidade.

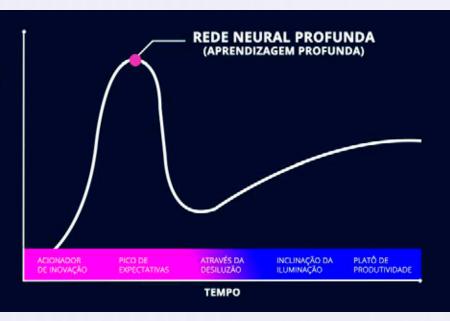
No entanto, Max Tegmark, cofundador do Future of Life Institute, escreve em seu livro "Life 3.0" que a noção de humanos programando uma máquina para odiar humanos é bastante absurda e alimentada pelo fascínio de Hollywood por tropos distópicos.

No entanto, ele também adverte contra a crença de que a IA transformará a nossa vida numa espécie de utopia de ficção científica. Tegmark adota uma abordagem mais centrista entre esses dois polos, escrevendo que deveríamos criar um caminho entre os extremos, aproveitando os benefícios da IA enquanto construímos salvaguardas em torno dela.

A outra extremidade positiva do espectro

Essas representações distópicas deram lugar a contos que se apoiam no extremo mais positivo. Por exemplo, o filme Interestelar apresentou uma relação simbiótica eficiente entre humanos e IA, enquanto Her explorou o que acontece quando os humanos se apaixonam pela Inteligência Artificial.

Além das obras de ficção, tendências semelhantes podem ser observadas nas obras de não ficção. Por exemplo, o Índice de IA da Universidade de Stanford observou que a mídia se tornou mais positiva em relação à inteligência artificial nos últimos anos. O relatório mais recente também destacou quantos modelos lançados em 2023 receberam um sentimento positivo nas redes sociais.


Essa mudança para uma postura positiva pode ser explicada por um reconhecimento mais amplo do potencial da IA para perturbar positivamente as indústrias, bem como para lidar com tarefas específicas melhor do que os humanos. Na área da saúde, essa interrupção pode vir na forma de chatbots, auxiliando na triagem ou como assistentes virtuais para radiologistas, contribuindo nas tomadas de decisão. Como o plano dos pesquisadores de IA em todo o mundo é parar antes de desenvolver a Inteligência Artificial geral, pensamos que o medo de uma década de Elon Musk de que possamos estar "invocando o demônio" com o desenvolvimento da IA é exagerado.

Começa a busca por visões equilibradas sobre a IA

No entanto, mesmo as atitudes positivas em relação à IA podem ser infladas. O Ciclo de Hype de Gartner pode dar uma indicação sobre isso. Representado como um gráfico, este ciclo representa a maturidade e a adoção de tecnologias e ajuda a discernir o que é comercialmente viável. No Ciclo de Hype para tecnologias emergentes, a IA generativa está posicionada no "Pico das Expectativas", ou mesmo antes, o que significa que ainda faltam alguns anos antes de atingirem o "Plateau de Produtividade", onde a adoção convencional começa a decolar.

Como tal, deveríamos ter uma visão mais equilibrada sobre a tecnologia, algo semelhante à posição de Max Tegmark. Para recalibrar nossas expectativas quando se trata de IA na área da saúde, devemos compreender melhor os seus riscos e potenciais. As aplicações nesse setor ainda estão dispersas, mas estão vindo. Você já deve estar em contato com a IA ao usar um aplicativo de verificação de pele ou um alarme de sono inteligente. A IA é capaz de superar radiologistas na identificação de lesões cancerígenas em imagens médicas, enfermeiros na identificação de medicamentos de venda livre inadequados para uma condição específica e médicos residentes em várias especialidades.

HYPER CICLO PARA TECNOLOGIAS EMERGENTES

Com tais avanços na IA, o cofundador da Sun Microsystems, Vinod Khosla, até previu que algoritmos substituiriam 80% dos médicos, mas tais afirmações estão levando as coisas longe demais. Em vez disso, é mais correto dizer que os médicos que não utilizam IA serão substituídos por aqueles que a utilizam. Para visualizar como isso pode acontecer, vamos dar uma olhada no tradicional jogo de tabuleiro de xadrez.

Em 1997, o supercomputador da IBM Deep Blue venceu Garry Kasparov, o melhor jogador de xadrez do mundo na época. Os especialistas pensaram que isso significaria a ruína do jogo de tabuleiro; afinal, quem iria querer jogar um jogo onde uma IA imbatível, que só fica melhor depois de cada jogo, reina suprema? Mas o número de entusiastas do xadrez não diminuiu: pelo contrário, continuou a crescer, com um estudo inicial aproximando o número de jogadores de xadrez ao mesmo número de membros regulares do Facebook. Em 2020, a série da Netflix O Gambito da Rainha reacendeu o interesse.

Os humanos ainda estão muito atrás no xadrez, mas os jogadores da modalidade fizeram as pazes com isso e adotaram a tecnologia. Ao estudar as táticas inovadoras da IA, os praticantes podem obter novos insights que os ajudam a melhorar suas próprias estratégias. Os treinadores de xadrez usam a tecnologia para instruir seus alunos. Até mesmo os espectadores podem obter avaliação em tempo real com a ajuda da IA para compreender o modo de pensar dos grandes mestres.

Curiosidade: os motores de xadrez modernos são tão poderosos que é impossível permitir que eles joguem na posição inicial, caso contrário, eles empatarão todas as partidas. Assim, para ver como eles se comportam em situações desafiadoras, é melhor dar-lhes linhas de abertura predefinidas para jogar partidas desafiadoras. Normalmente, essa linha tem uma vantagem suficientemente grande para permitir chances de vitória (porém sem garanti-la), para ver como se saem em posições tensas.

Como tal, o xadrez assumiu uma nova dimensão com a Inteligência Artificial, onde domina a disciplina, mas ainda ajuda os humanos a melhorar no jogo. Porém, **quem se aventura no mundo do xadrez sem a ajuda da lA não se sairá muito bem no cenário competitivo.**

É provável que um cenário semelhante se desenvolva no campo da medicina, com uma cooperação que funde criatividade e a empatia dos humanos com a capacidade preditiva da IA. Em vez de uma competição, a tecnologia deve ser vista como algo que amplifica o desempenho humano. Mas, para conseguir uma cooperação entre esses dois intervenientes nos cuidados de saúde, temos de embarcar numa busca para compreender melhor aquilo com o que estamos lidando.

O que é Inteligência Artificial?

Inteligência Artificial é um termo amplo usado para abranger tudo, desde a mente consciente por trás da voz de Scarlett Johansson no filme Her até o programa que derrota os melhores jogadores humanos no Jeopardy!. No entanto, com o interesse crescente em torno da tecnologia em praticamente todos os campos, incluindo a medicina, o termo vem sendo usado a torto e a direito por razões de marketing. Portanto, torna-se cada vez mais importante compreender o que constitui uma verdadeira IA.

Esse termo foi cunhado pelo cientista da computação John McCarthy, em 1956, durante uma conferência em Dartmouth, Nova Hampshire. Durante o evento, outros pesquisadores se reuniram para explorar se as máquinas poderiam alcançar a inteligência. À medida que o interesse cresceu ao longo dos anos, a IA passou a ser definida como "a capacidade de uma máquina imitar o comportamento humano inteligente", conforme Merriam-Webster. Ou, na sua definição mais simples, a Inteligência Artificial é a inteligência demonstrada por máquinas.

No entanto, quando falamos de IA hoje em dia, pensamos mais frequentemente em aprendizagem automática ou IA generativa. Esses termos são trocados, mas iremos explorá-los com mais detalhes em seções posteriores.

Estreita, geral ou super?

Simplificando, a Inteligência Artificial se refere à inteligência demonstrada pelas máquinas. Através de algoritmos ou de um conjunto de regras seguidas pela máquina, ela imita funções cognitivas humanas, como aprendizagem e resolução de problemas.

O filósofo Nick Bostrom, da Universidade de Oxford, expandiu ainda mais essa definição para descrever três níveis principais no desenvolvimento da IA:

Inteligência Artificial Estreita (ANI)

A ANI apresenta habilidades de reconhecimento de padrões em grandes conjuntos de dados, permitindo resolver problemas de classificação e clustering baseados em texto, voz ou imagem. É um algoritmo que pode se destacar em uma tarefa única definida com precisão. Embora possa jogar xadrez melhor do que qualquer grande mestre, seu QI é zero.

Inteligência Artificial Geral (AGI)

A AGI ainda não foi alcançada, mas sua capacidade cognitiva atinge os níveis humanos. Pode raciocinar, argumentar, memorizar e resolver problemas como você. Para saber se atingimos esse marco, um computador tem de passar no famoso Teste de Turing ou imitar um ser humano ao responder à pergunta de um interrogador, para que este não consiga dizer se uma máquina está respondendo com mais de 70% de precisão após cinco minutos de questionamento. O futurista Ray Kurzweil aposta que uma IA passará no Teste de Turing até 2029.

Superinteligência Artificial (ASI)

Também um conceito teórico, a capacidade cognitiva da ASI compara-se à de toda a humanidade, senão mais. Os humanos seriam incapazes de compreender o seu conhecimento e raciocínio; a própria tecnologia poderia ser considerada uma ameaça. Como tal, muitas organizações trabalham arduamente para evitar chegar a esse estágio.

Por enquanto, estamos lidando com a ANI, onde esses algoritmos inteligentes se destacam em uma tarefa específica, seja vencer grandes mestres humanos no xadrez ou superar radiologistas na identificação de lesões cancerígenas em imagens radiológicas. Mas, para realizar essas façanhas, os desenvolvedores precisam construir seus algoritmos de forma adequada, e isso só aconteceu recentemente, embora os conceitos relevantes estivessem presentes há várias décadas.

O que você precisa para desenvolver IA?

Embora a base teórica e as ideias sobre **IA já existam há mais de meio século**, o campo da Inteligência Artificial decolou apenas na última década. Antes disso, era intercalado pelos chamados "invernos de IA", períodos como o fim dos anos 70 e 80, em que o interesse e o investimento neste campo despencaram devido aos limites da tecnologia naquela época, que dificultavam o progresso significativo e levavam à secagem dos fundos.

Isso ocorre porque o que é necessário para desenvolver um sistema de IA tão competente se resume essencialmente a dois componentes: um forte poder computacional e uma vasta quantidade de dados. Nas décadas anteriores, o poder de processamento disponível não era ideal nem estava disponível para muitos pesquisadores. Somente em meados da década de 2000 a execução de sistemas de IA ficou mais fácil graças à tecnologia.

O progresso tecnológico com chips de empresas como a **NVIDIA** aumentou o poder computacional. Isso permitiu que mais pesquisadores desenvolvessem e trabalhassem com sistemas mais rápidos e complexos. A competição que se seguiu levou a sistemas que se esforçam para se tornarem mais precisos enquanto produzem quantidades crescentes de dados. O próximo salto gigante, já à vista, será a computação quântica, prevista para ser infinitamente mais rápida do que os supercomputadores atuais.

Isso nos leva ao segundo componente: dados. Antes, faltavam dados digitalizados, especialmente antes do advento da Internet. Números contemporâneos estimam a quantidade em 2,5 quintilhões de bytes de dados produzidos diariamente, volume que era incompreensível nos primeiros dias da IA. À medida que mais e mais dispositivos se emparelham com a Internet, essa taxa aumenta exponencialmente. Esse volume de dados anteriormente inacessível permite a existência de IA comercializável. Portanto, outro inverno de IA é improvável.

Análise de dados, machine learning e deep learning – métodos de ensino de algoritmos

O desenvolvimento de ANI envolve compreender enormes conjuntos de dados, linhas de códigos de equipes de engenheiros de computação e mais termos como aprendizado supervisionado e aprendizado profundo. Aqui, não entraremos em detalhes de tudo, mas forneceremos uma visão geral dos conceitos envolvidos. Mas, antes de mergulhar nisso, temos que deixar clara a distinção entre um algoritmo simples e uma IA.

Como mencionamos antes, quando surgem negociações em torno da IA, o fator hype entra em jogo. Por exemplo, algumas empresas podem alegar que sua solução usa IA quando, na verdade, utiliza apenas uma planilha com alguns macros, mantendo o prazo para arrecadar investimentos.

É importante ser capaz de traçar a linha entre um algoritmo simples e uma IA para que possamos abordar melhor as implicações legais, éticas e sociais relevantes, especialmente quando chegamos à medicina.

Traçando a linha entre algoritmos simples e IA com... uma receita de panqueca

O significado amplo e atual da palavra "algoritmo", conforme definido por Merriam-Webster, refere-se a "um procedimento passo a passo para resolver um problema ou atingir algum fim". Essas instruções fazem parte do que constitui uma IA, mas não são definidas como tal por si mesmas.

Quanto ao aprendizado de máquina (ML), a subcategoria predominante de IA, é definido como

"um método computacional que (...) permite que um computador aprenda a executar tarefas analisando um grande conjunto de dados sem ser explicitamente programado".

Para ilustrar suas diferenças, pense em um algoritmo como se estivesse dando a um robô uma receita para fazer uma panqueca. O robô seguirá aquela receita, fará aquela panqueca e parará assim que essa função for concluída. Mas seguir um algoritmo tão simples não significa que o robô possua inteligência artificial.

Em comparação, um robô baseado em ML, alimentado com dados suficientes sobre receitas de panquecas, ainda fará uma panqueca. No entanto, em vez de seguir a receita, ele aprenderá. O robô acabará por fazer aquela panqueca com a mistura certa de ingredientes de marcas específicas que considerou mais favoráveis no conjunto de dados, mesmo que você não tenha dito explicitamente para fazer isso, gerando uma enorme quantidade de tentativas fracassadas ao longo da linha.

Resumindo, um algoritmo regular simplesmente executa uma tarefa conforme as instruções, enquanto uma verdadeira IA é codificada para aprender a executar uma tarefa.

Para ajudar a fazer a distinção de um ponto de vista mais técnico, recorremos a Márton Görög, cientista de dados da Neunos Electrotherapeutics. Görög destaca que "aprender" e "dados" são termos importantes ao definir um algoritmo baseado em ML, já que um algoritmo regular não precisa de nenhum dado para ser criado. Ele segue definindo um algoritmo de ML como aquele programado para "aprender a executar uma tarefa usando dados de treinamento".

"Neste sentido contemporâneo, as principais diferenças são que um algoritmo regular é totalmente criado por um engenheiro de software, implementando a forma conhecida de resolver o problema como comandos legíveis por máquina", elabora Görög. "Enquanto após a preparação de um modelo de ML vem o treinamento em si, que é conduzido pelos dados de treinamento, muitas vezes sem qualquer interação humana".

Quanto à forma como um algoritmo baseado em IA aprende, existem vários subtipos de ML e métodos combinados. No entanto, três subtipos principais, bem como um método avançado de aprendizagem profunda (DL), são mais relevantes para a saúde, e abordaremos isso a seguir.

Como a IA aprende

Em **Um breve guia para profissionais médicos na era da Inteligência Artificial,** um estudo revisado por pares de 2020, Meskó et al. comparou a maneira como um algoritmo baseado em ML aprende da mesma forma que uma criança. Sob orientação humana apropriada, as crianças atuarão conforme as instruções, mesmo que não lhes seja explicitamente dito o que fazer. Da mesma forma, os desenvolvedores de IA atuam como professores que orientam a "criança" de IA. Usaremos essa analogia para explicar os principais subtipos de ML com os quais os desenvolvedores trabalham e que são relevantes para a saúde.

1. Aprendizagem supervisionada

Esse subtipo de ML é comparável a ensinar a uma criança exatamente o que aprender. É usado quando a tarefa exata do algoritmo pode ser definida com precisão com os dados disponíveis. Na prática médica, pode ser semelhante ao exemplo a seguir.

Temos dois grupos de pacientes, Grupo A e Grupo B, cada um com seu próprio conjunto de registros médicos. O conjunto do Grupo A contém a história familiar, marcadores laboratoriais e outros detalhes do diagnóstico. O conjunto do Grupo B consiste nos mesmos tipos de informações, mas falta o diagnóstico. Podemos treinar um algoritmo com aprendizagem supervisionada para atribuir o diagnóstico correto ao Grupo B, com base nas associações e rótulos que o algoritmo aprende no Grupo A. Esse método é o modo de treinamento usado com mais frequência.

2. Aprendizagem não supervisionada

Como o nome sugere, esse método é semelhante ao aprendizado sem professor. As ferramentas iniciais estão aí, mas a criança decide o resultado final. Fornecemos diferentes conjuntos de dados ao algoritmo e ele encontra associações por conta própria, mesmo aquelas nas quais talvez não tenhamos pensado.

Além disso, não modificamos o algoritmo com base no resultado. Tal modelo pode descobrir novas interações medicamentosas ou agrupar pacientes de acordo com os atributos que apresentam.

3. Aprendizagem por reforço

A aprendizagem por reforço partilha características semelhantes à aprendizagem não supervisionada, na medida em que as ferramentas iniciais são dadas à "criança" e esta é deixada a tomar decisões por si própria para realizar uma tarefa. No entanto, ao contrário da aprendizagem não supervisionada, a aprendizagem por reforço envolve a contribuição do "professor".

Após uma série de ações (mas não após cada ação, como acontece com o aprendizado supervisionado), os desenvolvedores de IA inserem seus comentários para orientar o algoritmo na direção do melhor curso de ação. O problema com a utilização desse subtipo nos cuidados de saúde é que não podemos testar o algoritmo num grande número de cenários, uma vez que estão em jogo vidas de pacientes.

4. Deep Learning

DL é um subtipo avançado de ML que possui potenciais diferentes. Seu funcionamento é baseado em redes neurais artificiais (RNA), ela própria inspirada na rede neural do cérebro humano. O DL consiste em uma estrutura de RNA em camadas, onde quanto mais camadas houver, mais tarefas complexas ela pode executar.

Digamos que estamos construindo um modelo para agrupar pacientes com base em seus diagnósticos. Se a informação for "Diabetes Tipo 1", um algoritmo de ML agrupará os registros médicos com "Diabetes Tipo 1". Um algoritmo DL, por outro lado, será capaz de, com o tempo, atribuir aos pacientes apenas a abreviatura "T1D" mencionada em seus registros para o mesmo grupo, sem intervenção humana. Outros subtipos de ML exigirão entrada manual dos desenvolvedores para reconhecer esta abreviatura.

MÁQUINA E MÉTODOS DE APRENDIZAGEM PROFUNDA

5. Aprendizagem federada

A aprendizagem federada é uma forma de treinar modelos de aprendizado de máquina sem acessar ou transferir dados diretamente de dispositivos individuais para um servidor central. Ele foi projetado para manter a privacidade de informações confidenciais e, ao mesmo tempo, permitir que um modelo aprenda de maneira eficaz.

Com esse método, diversas instituições participantes treinam algoritmos de ML localmente, sem compartilhar dados dos pacientes fora do hospital. Posteriormente, as características do modelo são compartilhadas para melhorar as decisões. Estudos mostraram que tal abordagem tem desempenho comparável a outros modelos de ML. A vantagem dessa técnica colaborativa é que os dados sensíveis não saem do hospital.

6. Aprendizagem autossupervisionada (self-supervised learning, SSL)

Na aprendizagem autossupervisionada, a nossa "criança" aprende com dados de amostra não rotulados. Pode ser considerada uma forma intermediária entre a aprendizagem supervisionada e a não supervisionada. É baseada em uma rede neural artificial que aprende em duas etapas. Primeiro, a tarefa é resolvida com base em pseudorrótulos que ajudam a inicializar os pesos da rede. Em segundo lugar, a tarefa real é executada com aprendizagem supervisionada ou não supervisionada.

A aprendizagem autossupervisionada produziu resultados promissores nos últimos anos e encontrou aplicação prática no processamento de áudio e reconhecimento de fala. O principal apelo do SSL é que o treinamento pode ocorrer com dados de qualidade inferior.

A aprendizagem autossupervisionada imita mais de perto a maneira como os humanos aprendem a classificar objetos.

Dados em saúde

Agora que conhecemos os principais termos e métodos relevantes para a saúde que são utilizados no campo da Inteligência Artificial, podemos voltar a nossa atenção para a situação atual dos dados na saúde. Como essas informações são cruciais para construir uma IA médica competente e familiarizar-se com seu estado atual, podem nos ajudar a entender melhor como e por que esses algoritmos inteligentes podem ajudar a área médica.

Na era da saúde digital, os dados são coletados de rastreadores de condicionamento físico, sensores de saúde e outros dispositivos vestíveis. Mas, antes disso, uma pluralidade de dados de saúde foi — e ainda é — recolhida através dos registros médicos eletrônicos (EMR) dos sistemas de saúde. Sua grande quantidade de dados representa um tesouro em nosso mundo orientado por dados; sendo, portanto, um recurso amplamente utilizado para ferramentas médicas de IA. Vamos ver como.

Uma breve história e o estado atual dos registros médicos eletrônicos

Do método tradicional de caneta e papel ao sistema totalmente digitalizado ao qual estamos acostumados, os registros médicos passaram por uma tremenda mudança. Esses registros médicos em papel foram definidos como não confiáveis, repletos de dados faltantes e/ou incompletos, cruciais para o prontuário de um paciente. Mas essa mudança ocorreu recentemente e para visualizá-la podemos olhar para o exemplo dos Estados Unidos, onde está disponível uma das mais extensas documentações da história médica.

A história dos primeiros sistemas de processamento de dados começa em meados da década de 1960, que focou no gerenciamento de dados clínicos. Tais sistemas despertaram interesse com o desenvolvimento da abordagem Prontuário Médico Orientado a Problemas, que gira em torno de resolver problemas médicos em vez de prevenir doenças e manter uma saúde ótima. Os registros eletrônicos das informações dos pacientes já eram considerados favoráveis.

Isso levou ao desenvolvimento do **primeiro sistema de registro médico eletrônico pelo Instituto Regenstrief, em 1972.** No entanto, a tecnologia não se espalhou inicialmente por ser cara e não apresentar interoperabilidade. A adoção só decolou realmente na década de 1990, quando os computadores pessoais se tornaram mais acessíveis e começaram a se interconectar com o advento da Internet. Isso levou o Instituto de Medicina a recomendar, em 1991, que até o ano 2000 todos os médicos deveriam fazer uso de computadores para melhorar o atendimento ao paciente.

No entanto, apesar da rápida taxa de informatização e do surgimento de software baseado na web, os **EMRs não tiveram uma taxa de adoção de 100%**, nem mesmo nos EUA. Em 2022, os Centros de Controle e Prevenção de Doenças **(CDC)** estimaram a quantidade de **médicos de consultório que usam qualquer sistema EMR/EHR em 88,2%.** Mesmo entre aqueles que adotaram um sistema EMR, são relatados problemas com a sua utilização na prática. 60% dos médicos não estão satisfeitos com os sistemas que utilizam; eles passam em média metade de seus dias de trabalho apenas para inserir dados em EHRs, gastando apenas 27% com seus pacientes. O EHR é, inclusive, percebido como o desafio número um por 37% dos médicos americanos.

Como tal, com a carga cada vez maior de dados médicos, a necessidade de simplificar os sistemas EMR para melhor lidar com estes sem sobrecarregar os médicos torna-se uma necessidade. Esses sistemas tornam os dados médicos dos pacientes mais acessíveis do que nunca, mas não estão totalmente otimizados para a era da saúde digital. Além disso, apenas delineamos aqui a situação nos Estados Unidos, mas globalmente há muitos países onde os registros médicos ainda dependem de papel, e o processo de criação de sistemas EMR eficientes é ainda mais lento e problemático. Mas a IA pode mudar a maré.

Por que precisamos da ajuda da IA quando se trata de dados de saúde?

Embora os registros tradicionais em papel e caneta tenham demonstrado uma resiliência obstinada, a quantidade de dados médicos digitais acumulados está aumentando exponencialmente em paralelo. Deixando de lado as imagens médicas e os resultados de laboratório, os próprios pacientes geram esses dados quase constantemente com rastreadores de condicionamento físico e outros dispositivos vestíveis, desde análises do sono até monitoramento da frequência cardíaca. De acordo com a previsão para 2024, **aproximadamente 560 milhões de wearables serão enviados. 396 milhões de wearables foram enviados globalmente,** com a Apple liderando o mercado global desde o lançamento do Apple Watch, em 2015. O mercado de wearables tem previsão de continuar a crescer nos próximos anos, juntamente com o volume de dados de saúde personalizados que monitoram.

Não são apenas os indivíduos que geram grandes quantidades de dados, mas também os cientistas. Todos os anos, cerca de **2,5 milhões novos artigos científicos são publicados,** com alguns pesquisadores prolíficos publicando até 72 artigos científicos por ano, ou cerca de um a cada cinco dias. Não é de se admirar que hoje em dia o conhecimento médico duplique a cada 73 dias. Em comparação, o tempo de duplicação em 1950 foi estimado em cerca de 50 anos. Essas pesquisas representam uma riqueza de conhecimento médico que infelizmente é indigestível para os clínicos isolados, mesmo para aqueles que se esforçam para estar entre os mais atualizados.

No entanto, combinar a quantidade cada vez maior de dados de saúde personalizados com novas descobertas pode revelar novos insights sobre a doença e/ou tratamento potencial de uma pessoa mais rapidamente do que os métodos tradicionais. Por exemplo, na epidemia do vírus Ebola na África Ocidental, em 2015, a startup de IA Atomwise, em parceria com a Universidade de Toronto e a IBM, forneceu a sua tecnologia de Inteligência Artificial para realizar a investigação de medicamentos no desenvolvimento de um tratamento adequado. Seu sistema identificou duas drogas que poderiam reduzir significativamente a infecciosidade do Ebola. Essa análise, que normalmente levaria meses ou anos, foi concluída **em menos de um dia.**

Além disso, com a mineração de dados e as capacidades preditivas da IA, ela pode encontrar associações que de outra forma seriam invisíveis ao olho e ao cérebro humanos. Isso ocorre porque, embora uma IA leve em consideração os recursosque os médicos também consideram, um algoritmo inteligente também aproveita correlações sutis de pontos de dados periféricos que os médicos sequer pensariam em considerar. Tomemos por exemplo um sistema de IA desenvolvido pela Academia Chinesa de Ciências e pelo Hospital Geral PLA em Pequim.

Neste sistema, o software analisa imagens cerebrais para reavaliar as decisões do médico sobre pacientes em coma ou estado vegetativo. Em pelo menos sete casos onde os médicos estavam confiantes de que os pacientes não recuperariam a consciência, a IA os contradisse e, de fato, esses pacientes acordaram 12 meses após os exames cerebrais. Isso ocorre porque seu algoritmo de aprendizado de máquina pode detectar alterações mínimas na ressonância magnética funcional que são indicativas de uma recuperação contínua, mas são difíceis de detectar pelos médicos devido à rápida evolução das atividades neurais.

Em outro caso, os pesquisadores do Google treinaram modelos de aprendizagem profunda para identificar sinais que indiquem riscos cardiovasculares a longo prazo a partir dos dados de **mais de 280 mil pacientes.** Posteriormente, a IA aprendeu sozinha o que procurar apenas nas imagens da retina, após analisar dados suficientes para identificar padrões encontrados nos olhos de pessoas em risco. Tradicionalmente, para avaliar esses riscos, os médicos precisam examinar manualmente a retina, fazer exames de sangue e considerar outros fatores como idade e IMC.

Embora a dedução de tais algoritmos possa confundir até mesmo o médico mais treinado, decifrar o raciocínio da IA por trás de tal conclusão dará início à verdadeira era da arte da medicina. Esse processo dependerá de altos níveis de criatividade, resolução de problemas e habilidades cognitivas que a comunidade médica possui.

Embora ainda estejamos no início dessa era, vários campos da saúde já começaram a adotar a Inteligência Artificial em seu ofício. Iremos explorá-los no próximo capítulo.

APLICANDO INTELIGÊNCIA ARTIFICIAL NA SAÚDE

A capacidade da Inteligência Artificial de recolher informações, analisar enormes conjuntos de dados e encontrar correlações que de outra forma seriam invisíveis ao olho humano, coloca-a facilmente como uma das tecnologias mais disruptivas nos cuidados de saúde do século 21. Esses potenciais disruptivos podem trazer uma ajuda tremenda durante crises de saúde pública, conforme destacado durante a pandemia da **covid-19.** A contribuição da IA aconteceu nos primeiros dias do surto. Na verdade, foi a BlueDot, uma empresa de IA, quem emitiu os primeiros avisos de um surto, antes que a **OMS** ou o **CDC** o fizessem.

A BlueDot usou seu algoritmo para examinar hordas de reportagens, dados de companhias aéreas e relatórios de surtos de doenças animais para detectar tendências. Em seguida, foram analisados por epidemiologistas, que alertaram os clientes da empresa. O software até previu corretamente o provável caminho do vírus de Wuhan a Tóquio depois que ele apareceu pela primeira vez.

Essas contribuições também se estenderam durante a pandemia. Por exemplo, o Hospital Zhongnan, na China, usou um **software baseado em IA para ajudar radiologistas a rastrear pacientes em busca de sinais de pneumonia associados a infecções por SARS-CoV-2 em imagens de tomografia computadorizada de pulmão,** e, assim, priorizar possíveis casos de covid-19 para testes adicionais. Outros, como o BarabasiLab, tiveram assistência da Inteligência Artificial na busca de tratamentos potenciais para o coronavírus.

É claro que a contribuição da IA nos cuidados de saúde estenderá para além da pandemia, mas esses exemplos indicam como podemos nos preparar melhor para crises futuras com a ajuda de tais algoritmos.

Considerando esses, bem como a contribuição da IA noutras áreas da saúde, podemos facilmente discernir que tipos de tarefas os algoritmos inteligentes podem realizar na medicina e na saúde, e são estas que exploraremos nas sessões seguintes:

- Simplificar dados de saúde para melhor gerenciamento e mineração de insights.
- Projetar caminhos de tratamento para facilitar decisões diagnósticas e terapêuticas.
- · Fornecer informações valiosas em imagens médicas.
- · Auxiliar profissionais médicos como escribas virtuais para papelada.
- Ajudar os pacientes no gerenciamento de sua doença
- · Tornar a medicina de precisão uma realidade.
- Apoiar empresas farmacêuticas na concepção de medicamentos e ensaios clínicos humanos.

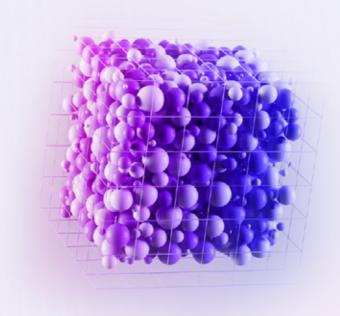
À medida que as soluções baseadas em IA para fins de saúde surgem cada vez mais nas empresas todos os meses, os decisores políticos e os reguladores precisam intensificar o seu jogo. Esforços nesse sentido são visíveis, como os da Food & Drugs Administration (FDA) dos EUA e da Agência Europeia de Medicamentos (EMA). A FDA, em particular, demonstrou liderança na adoção de tecnologias médicas baseadas em IA e até emitiu um quadro regulamentar para IA médica em todo o mundo.

Os governos da Dinamarca e Cazaquistão adotaram estratégias nacionais de saúde digital para concentrar os esforços na saúde digital, e discussões relevantes levarão inevitavelmente à IA médica.

As previsões já projetam que o tamanho do mercado global de IA na área da saúde ultrapassará a sua avaliação de **20 mil milhões de dólares em 2024** e atingirá quase **150 mil milhões de dólares em 2029.** Essa tendência não mostra quaisquer sinais de abrandamento à medida que avançamos firmemente para a era da IA nos cuidados de saúde. À medida que continuamos nesse caminho, vamos explorar as aplicações existentes de algoritmos inteligentes, os resultados que eles geram e as expectativas futuras em todo o setor médico.

1. Gestão de dados de saúde

A acumulação exponencial de informação médica representará continuamente um desafio de assimilação e processamento até mesmo pelos mais aclamados médicos e investigadores das ciências da vida. Mas o software baseado em IA pode oferecer assistência incomparável, e empresas como a IBM, Catalisador de Saúde, Epic Systems e InterSystems já estão fornecendo essas soluções.


Em nível institucional, a utilização mais óbvia da IA será a gestão de dados. Tarefas de processamento de dados repetitivas, tediosas e não tão emocionantes, como coleta, armazenamento e categorização, podem ser realizadas com eficiência por algoritmos inteligentes. O Registro Unificado de Cuidados HealthShare da InterSystems aproveita análise preditiva, processamento de linguagem natural e aprendizado de máquina em dados de 8 milhões de pacientes e centenas de milhões de diagnósticos, seja para ajudar os provedores ou coordenar o atendimento e descobrir padrões a partir de seus dados.

Essa solução ajudou a Northwell Health a gerenciar seus dados clínicos, melhorando a prestação e a coordenação de cuidados, os resultados e o desempenho dos negócios.

Em parceria com a Microsoft, a Epic Systems está integrando lA generativa em sua solução de registro médico eletrônico (EMR), para incorporar a plataforma Nuance DAX (Dragon Ambient eXperience) diretamente no EHR da Epic. Essa integração permite que os médicos usem lA generativa para agilizar a documentação clínica. Ao aproveitar o reconhecimento de fala baseado em IA do DAX, os médicos podem ditar suas anotações enquanto a IA as transcreve, organiza e resume em tempo real, reduzindo significativamente a carga administrativa. A plataforma Dragon Medical One, também integrada à Epic, oferece benefícios semelhantes ao converter comandos de voz em documentação clínica estruturada, o que permite que os médicos se concentrem mais no atendimento ao paciente do que na papelada. Essas soluções podem reduzir a carga administrativa e o desgaste dos médicos, aumentando a qualidade da documentação e garantindo registros mais abrangentes.

Copiloto de Nabla é um assistente de IA generativo projetado para agilizar tarefas administrativas. Ele transcreve, resume e organiza anotações em tempo real, integrando-se perfeitamente aos sistemas existentes de Registro Eletrônico de Saúde (EHR), aproveitando o processamento avançado de linguagem natural. Ele também pode extrair informações médicas importantes, auxiliar na codificação e gerar resumos acionáveis, reduzindo a carga administrativa dos médicos.

No entanto, esse acesso aos dados conduz, inevitavelmente, a preocupações com a privacidade. Por exemplo, em 2017, o Gabinete do Comissário de Informação (ICO) do Reino Unido investigou a violação da lei guando a Royal Free NHS Foundation Trust estava compartilhando grandes quantidades de dados de pacientes com a filial DeepMind Al do Google para desenvolver uma nova plataforma. O Trust não informava adequadamente os pacientes de que os seus dados estavam sendo utilizados para esse fim, e, por isso, teve de estabelecer uma base jurídica para o futuro processamento de dados, concluir uma avaliação do impacto na privacidade e encomendar uma auditoria independente. Nesses casos, as autoridades devem defender a privacidade dos dados dos pacientes, tal como fez o ICO.

2. Desenho da via de tratamento

Além de simplificar o gerenciamento de dados, a IA também pode ajudar a projetar caminhos de tratamento. O companheiro do **AI-Pathway Companion, da Siemens Healthineers,** é uma ferramenta que ajuda os médicos a planejarem as próximas etapas no diagnóstico e terapia de pacientes ao longo de caminhos específicos de doenças. A solução de IA oferece insights comparando o estado clínico dos pacientes com as diretrizes atuais para facilitar o diagnóstico e as decisões terapêuticas.

Em 2020, a Siemens Healthineers firmou parceria com o Hospital Universitário de Basileia para implementar o Al-Pathway Companion, visando ajudar os urologistas com recomendações baseadas em evidências e otimizar abordagens de tratamento para pacientes com câncer de próstata. Um projeto de implementação clínica semelhante também foi lançado no Radboud University Medical Center, na Holanda. No entanto, a sua ferramenta de apoio à decisão clínica não se limita apenas à Oncologia, mas também é aplicada nas áreas da Cardiologia e das doenças infecciosas.

Várias startups também estão trabalhando em algoritmos inteligentes para auxiliar nas vias de tratamento. Alguns afirmam que a empresa húngara está desenvolvendo soluções de Inteligência Artificial para projetar tratamentos personalizados para qualquer tipo de câncer ou paciente com maior rapidez do que qualquer serviço de saúde tradicional.

A antiga filial Watson for Oncology, da IBM, também oferece soluções semelhantes. Um estudo prospectivo publicado no Journal of Clinical Oncology, em 2019, mostrou que as contribuições do Watson for Oncology levaram a mudanças na tomada de decisão de um conselho multidisciplinar de tumores em **13,6% dos casos.** Embora esse ramo da IBM tenha desenvolvido tecnologia promissora, vários relatórios contestaram a sua eficácia em 2018 e até apontaram riscos potenciais para a segurança dos pacientes.

Um relatório da Stat News revelou informações de documentos internos da IBM. Estes mostraram que Watson "frequentemente divulga conselhos errados sobre tratamento de câncer" e que "múltiplos exemplos de recomendações de tratamento inseguras e incorretas" foram identificados pelos médicos especialistas e clientes da empresa. Outra reportagem do Wall Street Journal documentou como "mais de uma dúzia de parceiros e clientes da IBM interomperam ou reduziram os projetos relacionados à oncologia do Watson".

No entanto, essas alegações foram refutadas pela IBM. A empresa destacou que está "100% focada na segurança do paciente" e que o Watson for Oncology está destinado a ser uma ferramenta que não diagnostica, mas fornece aos médicos opções de tratamento apoiadas em evidências. "Em última análise, a decisão do tratamento cabe sempre ao médico e ao paciente", escreveu a empresa. A IBM anunciou, no início de 2022, que vendeu o Watson para uma empresa de investimento global.

Como tal, recomenda-se cautela mesmo ao trabalhar com soluções de grandes empresas de tecnologia. Em última análise, a IA deve ser considerada uma ferramenta que ajuda na tomada de decisões, e não uma autoridade que dá a palavra final.

3. Transformando diagnósticos

Entre os campos mais avançados da ANI, a visão computacional já tem um enorme impacto no diagnóstico através da revolução da imagem médica. Algoritmos inteligentes podem analisar ressonâncias magnéticas, tomografias computadorizadas, raios X e quaisquer outras imagens médicas no futuro. Esses algoritmos podem detectar sinais nas gravações que não são acessíveis ao olho humano. **Radiologia, Dermatologia, Oftalmologia e outras especialidades podem e irão aproveitar ainda mais o vasto potencial da ANI.**

Para começar, em 2017, cientistas da Universidade de Adelaide experimentaram um sistema de IA que seria capaz de dizer se alguém vai morrer. Ao analisar tomografias computadorizadas de 48 pacientes, algoritmos de aprendizagem profunda puderam prever se eles morreriam dentro de cinco anos com 69% de precisão. É "amplamente semelhante" às pontuações de diagnosticadores humanos, disse o jornal.

Foi uma conquista impressionante. O sistema de aprendizagem profunda foi treinado para analisar **mais de 16 mil características de imagens** que poderiam indicar sinais de doenças nesses órgãos.

A rede de hospitais HCA Healthcare desenvolveu um algoritmo preditivo chamado Sepsis Prediction and Optimization of Therapy. Ele monitora continuamente os dados do paciente para identificar casos de sepse potencialmente iminentes. O algoritmo é capaz de detectar a sepse seis horas antes – e com mais precisão – do que os médicos, permitindo ao sistema de saúde reduzir as taxas de mortalidade por sepse em quase **30% em 160 hospitais**, informou o Wall Street Journal.

"Mas esta é apenas a ponta do iceberg. Também há muitas pesquisas em andamento para ensinar algoritmos a detectar várias doenças. Com a sua capacidade de analisar informações, reconhecer padrões e derivar tendências de formas que os humanos não conseguem, os algoritmos baseados em IA podem surpreender-nos com novas associações na medicina." Por exemplo, pesquisadores da Universidade da Califórnia, em São Francisco, treinaram um algoritmo de aprendizagem profunda para reconhecer padrões metabólicos associados à doença de Alzheimer a partir de exames cerebrais FDG-PET, um método usado para estudar a atividade metabólica das células cerebrais. Eles usaram um conjunto de dados com **mais de 2.100 imagens cerebrais FDG-PET de 1.002 pacientes para ensinar a IA.** Nos testes subsequentes, a IA detectou a condição com 100% de sensibilidade, em média mais de seis anos antes do diagnóstico final!

Os gigantes da tecnologia também foram rápidos em integrar a IA em seus sistemas de software de imagens médicas. A IBM foi uma das pioneiras na aplicação de IA em saúde, com a criação de uma plataforma analítica massiva. Também não faltaram os dados necessários, pois ao adquirir o Merge Health, em 2015, o Watson teve acesso a milhões de estudos de Radiologia e uma grande quantidade de dados de registros médicos existentes para ajudar a treinar o algoritmo, superando os **70,5% dos dermatologistas humanos.** Mas, apesar de se esforçar, a gigante da tecnologia nunca conseguiu realmente ter sucesso na área da saúde. Depois de grandes investimentos seguidos de múltiplas falhas no segmento, a empresa começou a demitir grande parte de sua força de trabalho em 2018, vendendo o Watson no início de 2022 para focar em serviços mais lucrativos.

Outros tiveram sucessos maiores. A Philips possui uma linha completa de diagnósticos habilitados para soluções em IA e continua a expandir seu tamanho por meio de aquisições e desenvolvimento. A GE Saúde adicionou IA em sua nova linha de sistemas de ultrassom para aumentar os recursos de diagnóstico, acelerar o tempo dos exames e torná-los mais precisos – mesmo com ultrassonografistas menos experientes.

A lA ajuda a reduzir o tempo do exame em até **80%, com 99% de precisão,** pois o algoritmo reconhece automaticamente a anatomia em planos de digitalização 2D padrão.

Uma das empresas líderes em soluções de imagens médicas de IA é a Aidoc. Com várias aprovações da FDA, sua solução de triagem de IA pode não apenas detectar embolia pulmonar incidental em tomografias computadorizadas, mas também sinalizar casos que os médicos originalmente não suspeitavam. De acordo com a chefe de tomografia computadorizada do Cedars-Sinai Medical Center, com sede em Los Angeles, Dra. Cindy Kallman, "a capacidade de ligar para o médico solicitante enquanto o paciente ainda está em casa é enorme. Estamos essencialmente oferecendo um diagnóstico de EP no local de atendimento para nossos pacientes ambulatoriais, quase sem esforço extra".

A Aidoc também possui autorização de aprovação de emergência da FDA para usar seus algoritmos para detectar casos prováveis de covid-19 em tomografias computadorizadas, ajudando os radiologistas a encontrar casos positivos mesmo quando não estão olhando. A lA visa detectar diagnósticos em pacientes que estavam sendo examinados para outra condição, como dor de estômago.

No entanto, a Inteligência Artificial ainda é um campo de investigação jovem e tem um longo caminho a percorrer. Por exemplo, vários estudos mostram que, com a ajuda da IA, os radiologistas melhoraram a precisão da detecção do câncer em exames radiológicos. Em cenários futuros, a IA médica treinada por meio do aprendizado por reforço permitirá a descoberta de tratamentos e curas para doenças que os profissionais médicos humanos não conseguirão.

Outra função para as empresas de IA é apoiar os profissionais médicos com relatórios e análises de dados, assim como a empresa BrainMiner, sediada no Reino Unido, que fornece um sistema automatizado para análise de exames cerebrais de ressonância magnética, visando ajudar os médicos com um relatório fácil de interpretar. Também é o caso da Lunit, que visa otimizar o diagnóstico e o tratamento, "buscando o diagnóstico certo, com o custo certo e o tratamento certo para os pacientes certos".

Praticamente não existe área médica onde a Inteligência Artificial não seja benéfica. Diagnosticar doenças raras é um dos campos onde a identificação e o tratamento representarão um desafio, e a IA pode ajudar. Em todo o mundo, cerca de meio milhão de crianças nascem com uma doença hereditária rara. Muitos desses casos apresentam características físicas específicas que podem auxiliar na sua identificação, mas os pediatras podem não perceber porque nunca estiveram em contato com tais casos. No entanto, nada escapa ao olhar meticuloso da inteligência artificial.

Em um estudo da Universidade de Bonn e da Charité – Universitätsmedizin Berlin, os pesquisadores usaram um **software baseado em IA em dados de 679 pacientes, com 105 doenças diferentes,** causadas por uma alteração em um único gene. Estas incluem condições como mucopolissacaridose, síndrome de Mabry e síndrome de Kabuki, em que as pessoas afetadas apresentam características faciais específicas.

Os pesquisadores treinaram a rede neural Deep Gestalt com 30 mil fotos de pessoas com condições raras. "Em combinação com a análise facial, é possível filtrar os fatores genéticos decisivos e priorizar os genes", disse o Prof. Krawitz, que trabalhou neste estudo.

"A fusão de dados na rede neuronal reduz o tempo de análise de dados e leva a uma maior taxa de diagnóstico". Os resultados mostraram que, com a ajuda da IA, a identificação das doenças raras era muito mais precisa. O uso dessa técnica poderia acelerar a identificação e o tratamento das pessoas afetadas desde o início.

Ainda assim, o diagnóstico é necessário mesmo nos casos mais comuns. Pesquisadores da Enfermaria de Olhos e Ouvidos do Monte Sinai (NYEE), em Nova Iorque, construíram um algoritmo que pode detectar a degeneração macular relacionada à idade (DMRI), uma das principais causas de perda de visão nos Estados Unidos, além de ajudar os profissionais médicos a prever o risco de como o caso irá evoluir e qual é a sua gravidade, contribuindo para que os

pacientes busquem por cuidados mais cedo.

Biomarcadores vocais também possuem um potencial incrível na reforma do diagnóstico. Certas doenças, como as que afetam o coração, os pulmões, as pregas vocais ou o cérebro, e podem alterar a voz de uma pessoa, são beneficiadas pelas análises de voz baseadas em Inteligência Artificial, que oferecem novos horizontes na medicina.

A lA também está por trás dos wearables, como pequenos dispositivos semelhantes a um patch, que possuem dois componentes. Um deles detecta e converte sinais gerados pelos movimentos musculares em sinais elétricos, que são traduzidos em sinais de fala por um algoritmo de aprendizado de máquina.

Essa ferramenta de triagem totalmente não invasiva ajuda os médicos a avaliar remotamente a saúde de seus pacientes, fornecendo resultados imediatos que podem orientar os médicos na tomada de decisões rápidas e informadas sobre diagnóstico e planos de tratamento.

4. Assistência e administração de saúde

Lidar com pacientes requer muita administração, organização e papelada. Olhando para os cuidados primários, médicos e enfermeiros frequentemente encontram pacientes com problemas menores que poderiam ser tratados sem a intervenção de um profissional médico, como pessoas que apenas querem receitas ou possuem questões organizacionais.

A Inteligência Artificial estreita poderia ajudar a equipe médica com assistentes pessoais inteligentes, como uma versão da Siri ou Alexa para a saúde, por exemplo. Esses assistentes digitais com programas de processamento de linguagem natural que convertem voz em texto poderiam ouvir as consultas médico-paciente e as "conversas" entre médicos e sistemas EHR, fornecendo uma transcrição sem que o médico digitasse sequer uma letra em seu computador.

Essa não é uma promessa vaga do futuro. A Epic Systems, da Microsoft, está integrando IA generativa em sua solução de Registro Médico Eletrônico (**EMR**) para incorporar a plataforma Nuance DAX, uma solução de voz para texto, diretamente no EHR da Epic.

Com essas soluções, os médicos podem ditar suas anotações enquanto se concentram no paciente. Enquanto isso, em segundo plano, o algoritmo os transcreve, organiza e resume em tempo real. Outra solução integrada à Epic, o Dragon Medical One converte comandos de voz em documentação clínica estruturada.

Essas soluções podem reduzir a carga administrativa e o desgaste dos médicos, aumentando a qualidade da documentação e garantindo registros mais abrangentes.

O Copiloto de Nabla é outro assistente de IA generativo integrado ao EHR que transcreve, resume e organiza notas em tempo real. Nos bastidores, ele usa processamento avançado de linguagem natural e também pode listar informações médicas importantes, auxiliar na codificação e gerar resumos acionáveis.

Digitar memorandos sobre encontros entre pacientes e médicos em EHRs consome tanto tempo que a demanda por escribas médicos cresceu exponencialmente nos últimos dois anos. Voz para texto baseada em tecnologias de Inteligência Artificial prometem virar o jogo: o médico e o paciente falam enquanto um assistente de voz escuta e anota o texto interpretado nas colunas relevantes dos EHRs.

As tecnologias de voz para texto representam uma alternativa à administração médica feita manualmente pelos médicos. Nos EUA, uma das maiores clínicas ortopédicas, a Ortholndy, tentou uma abordagem inovadora – e obteve grande sucesso. Anteriormente, muitos médicos das clínicas passavam de 2 a 3 horas por dia depois do trabalho ou nos fins de semana mapeando os dados faltantes dos exames. Alguns tentaram individualmente serviços de ditado, mas não foram muito eficientes.

Então, experimentaram uma assistente móvel de IA, Kara. Com base no áudio de conversas entre o médico e o paciente ou em resumos fornecidos pelo médico após o encontro, Kara enviou as palavras faladas pelos médicos diretamente para os lugares certos do registro, detalhadas e precisas; os médicos só precisavam revisar e assinar na nota no EHR. As soluções tornaram os médicos mais eficazes – e descansados. A Amazon também lançou seus serviços de reconhecimento de fala para médicos em 2019.

A Alexa foi usada pela primeira vez no hospital Cedars-Sinai em quartos inteligentes. Os pacientes nessas salas podem se comunicar com os enfermeiros apenas dizendo os seus pedidos em voz alta. "Alexa, diga à minha enfermeira que preciso me levantar para usar o banheiro!". A plataforma do hospital encaminha a solicitação do paciente ao cuidador certo, que pode ser um enfermeiro, parceiro clínico, gerente ou administrador. Com estas soluções, parece que a Inteligência Artificial pode realmente ajudar a trazer de volta o toque humano em saúde.

5. Gestão de pacientes

As tecnologias inovadoras no tratamento de pacientes visam permitir que estes assumam o controle da doença com suas próprias mãos e aliviem parte do fardo dos ombros dos médicos.

O hardware, os dados e a Inteligência Artificial, em conjunto, podem ter um impacto sério na saúde das pessoas – mas raramente andam de mãos dadas; isso é devido à mudança. "Um treinador de saúde habilitado para IA poderia beneficiar pessoas com doenças crônicas, como diabetes, que requerem cuidados regulares e de longo prazo. Hoje, esse tipo de coaching exige que um profissional de saúde se sente e converse com os pacientes".

Anders Dyhr Toft, vice-presidente corporativo da Novo Nordisk, explicou em entrevista: "Os médicos tratarão cada vez mais os pacientes remotamente, um treinador automático poderia fornecer uma opção conveniente para aqueles que não podem comparecer às sessões presenciais regulares".

Apoiando os deficientes visuais, Envision, OuCam, BeMyEyes e Aira oferecem suas soluções para abrir a possibilidade de viver uma vida mais independente. Os algoritmos que utilizam servem para descrever o ambiente ao usuário, notificá-lo sobre obstáculos, ler textos e reconhecer rostos e objetos.

O número de algoritmos inteligentes baseados em texto ou voz cresceu exponencialmente. Esses assistentes digitais podem marcar consultas, conectar pacientes com profissionais médicos e realizar outras tarefas simples. Eles ainda oferecem opções de pagamento e ajudam os pacientes a reabastecer suas receitas, entregar exames laboratoriais e muito mais.

Você precisa de um amigo quando se sente sozinho? Converse com Replika, seu amigo IA a quem você pode contar tudo sobre sua vida. Ou fale com Woebot, um pequeno assistente algorítmico com o objetivo de melhorar o humor. Ele promete se conectar de forma significativa com você e mostrar empatia, ao mesmo tempo que lhe dá a chance de falar sobre seus problemas e receber aconselhamentos em troca.

Sonia, a terapeuta cognitivo-comportamental baseada em IA, oferece sessões de terapia que passam sequencialmente por subestágios, como verificação de humor, atualização da semana anterior, definição do tópico principal, lição de casa, feedback e assim por diante. Exatamente como faz um psicólogo humano. Você prefere se conectar a um coach humano instantaneamente? Vá para o Headspace.

Os chatbots podem ajudar na melhor organização do percurso dos pacientes, na gestão de medicamentos, na ajuda em situações de emergência ou nos primeiros socorros, oferecendo uma solução para questões médicas mais simples: todas essas são situações possíveis para os chatbots intervirem e aliviarem a carga dos profissionais médicos. No entanto, um chatbot nunca pode substituir um profissional qualificado – em vez disso, pode apoiar tarefas administrativas, aliviando tanto médicos como pacientes.

O **AiCure fornece insights dos pacientes para melhorar os ensaios clínicos.** A empresa envolve diretamente os pacientes por meio de smartphones, fornecendo dados significativos e de alta qualidade sobre seu comportamento para patrocinadores e sites. Esses insights capacitam os locais a apoiar melhor os pacientes e patrocinadores na implementação do ensaio certo para o paciente certo, ajudando a promover uma maior compreensão da eficácia dos medicamentos, acelerar os prazos e reduzir os custos e a variabilidade dos ensaios.

Em alguns casos, chatbots de saúde também são capazes de conectar pacientes a médicos para diagnóstico ou tratamento, mas isso já é um passo adiante. A ideia geral é que, no futuro, estes algoritmos inteligentes de conversação ou envio de mensagens de texto possam se tornar o primeiro ponto de contato para cuidados primários.

Os pacientes não entrarão em contato com médicos, enfermeiras ou qualquer profissional da saúde para esclarecer cada uma de suas questões, mas recorrerão primeiro aos chatbots. Se o pequeno ajudante médico não conseguir responder confortavelmente às questões levantadas, ele transferirá o caso para um médico da vida real.

Algumas instituições reconheceram instantaneamente o potencial dos chatbots baseados em IA para os pacientes e seus serviços. O Serviço Nacional de Saúde da Grã-Bretanha (NHS) começou a usar um chatbot para fornecer aconselhamento médico por um período experimental, em 2017. O bot foi desenvolvido pelo serviço de saúde e consulta médica online britânico, Babylon Health.

Dentro do sistema da Babylon Health, os usuários poderiam relatar seus sintomas ao aplicativo. A IA usou o reconhecimento de fala para compará-los com um banco de dados de doenças. Com base no histórico e nas circunstâncias do paciente, Babylon recomendou o curso de ação correto, também lembrando os pacientes de tomarem seus medicamentos e os acompanhando para saber como estavam se sentindo.

Apesar do potencial válido, a Babylon Health, outrora avaliada em milhares de milhões de dólares, entrou com pedido de falência das suas subsidiárias nos EUA e estava em processo de liquidação dos seus ativos em 2013. As suas operações no Reino Unido foram vendidas à **eMed.** De acordo com a análise do mercado, a rápida expansão, as expectativas exageradas e as más decisões de gestão contribuíram para a sua queda.

Embora sem Babylon Health, o NHS continuou o desenvolvimento de chatbots em toda a Grã-Bretanha. Em junho de 2020, a organização lançou a versão escocesa do seu chatbot para aumentar o acesso a notícias e opções de tratamento relacionadas à covid-19.

Um exemplo mais recente é o Acesso Límbico, um chatbot com tecnologia de IA usado pelo NHS para agilizar encaminhamentos de saúde mental.

Isso levou a um **aumento de 30% nas referências**, uma redução nos tempos de espera, e tem sido particularmente eficaz em alcançar grupos minoritários, com encaminhamentos entre minoria não binária e étnica compacientes aumentando dramaticamente.

Medicina de precisão

Os Institutos Nacionais de Saúde (NIH) apontaram a existência de "uma abordagem emergente para o tratamento e prevenção de doenças que leva em consideração a variabilidade individual nos genes, ambiente e estilo de vida de cada pessoa". Assim, tanto os profissionais médicos como os investigadores serão capazes de fazer previsões mais precisas sobre que tipo de tratamento e estratégias de prevenção para uma determinada doença funcionarão em que grupos de pessoas.

A Inteligência Artificial tem um enorme impacto na medicina de precisão, incluindo genética e genômica. Por exemplo, ao procurar mutações e ligações com doenças, a Deep Genomics está identificando padrões em enormes conjuntos de dados de informações genéticas e registros médicos. Eles estão inventando tecnologias computacionais que podem dizer aos médicos o que acontecerá dentro de uma célula quando o DNA for alterado por variação genética, seja ela natural ou terapêutica.

Em 2017, Craig Venter, um dos pais do Projeto Genoma Humano, começou a trabalhar em um algoritmo que pudesse projetar as características físicas de um paciente – com base em seu DNA. Esse projeto atraiu muitas críticas, em particular de Yaniv Erlich, o "hacker do genoma", dizendo que os dados que Venter usou apenas aumentaram as questões de preconceito com a IA.

Com sua empresa, Human Longevity, Venter ofereceu soluções para longevidade e medicina de precisão por meio de uma combinação de sequenciamento do genoma, check-up médico e exame de corpo inteiro. Em 2018, eles se uniram à Scripps Research e outras organizações para encontrar os fatores genéticos da obesidade com "assinaturas" moleculares distintas de pessoas com obesidade, visando prever o risco de desenvolvimento de diabetes e doenças cardiovasculares. Em sua pesquisa de 2021, o Instituto J. Craig Venter (JCVI) estava investigando o vírus influenza A e descobriu que ainda estava causando danos ao tecido cardíaco muito tempo depois de ter sido eliminado dos pulmões.

No entanto, o projeto enfrentou desafios científicos e éticos significativos. Embora os resultados iniciais mostrassem potencial, a tecnologia e os algoritmos não eram suficientemente precisos para prever com segurança características complexas, como as faciais: apenas a partir de dados genéticos. Em 2020, Venter deixou a HLI e a empresa mudou o seu foco deste ambicioso projeto. As dificuldades em equilibrar a validade científica com considerações éticas, juntamente com as limitações técnicas, contribuíram para a descontinuação do projeto.

7. Apoiar a indústria farmacêutica: criação de medicamentos e ensaios clínicos

Novos medicamentos são aprovados através de ensaios clínicos em humanos: procedimentos rigorosos, que duram um ano, começando com ensaios em animais e gradualmente passando para os pacientes. As estimativas colocam os números em cerca de **12 anos e US\$ 6,7 bilhões para que um medicamento experimental avance do conceito ao mercado.** Isso leva em consideração o tempo e os recursos investidos na busca por candidatos adequados, na abordagem de efeitos colaterais inesperados em ensaios clínicos e nas múltiplas sequências. Além disso, os pacientes nos ensaios estão expostos a efeitos colaterais que não podem ser previstos ou esperados. Mesmo que o ensaio seja bem-sucedido, tem de passar pela aprovação regulamentar: pode ou não receber a aprovação da respectiva agência reguladora, por exemplo, a Food and Drugs Administration **(FDA)**, dos EUA.

A inteligência artificial mudou o *status quo* para melhor. A IA pode ajudar as empresas a agregar e sintetizar muitas informações necessárias para ensaios clínicos, encurtando, assim, o processo de desenvolvimento de medicamentos. Também pode apoiar a compreensão dos mecanismos da doença, estabelecer biomarcadores, gerar dados, modelos ou novos candidatos a medicamentos, conceber ou redesenhar medicamentos, realizar experiências pré-clínicas, conceber e executar ensaios clínicos e até analisar a experiência do mundo real.

Por exemplo, a Insilico Medicine, trabalhando com investigadores da Universidade de Toronto, ganhou as manchetes em 2019 com o anúncio de que o processo de desenvolvimento de um novo medicamento candidato dura apenas 46 dias com a ajuda do seu algoritmo inteligente. No início, demorou 21 dias para a equipe criar **30 mil designs para moléculas que têm como alvo uma proteína ligada à fibrose (cicatrizes nos tecidos).** Eles sintetizaram seis dessas moléculas em laboratório e depois testaram duas em células; o mais promissor foi testado em ratos. Os pesquisadores concluíram que era potente contra a proteína e apresentava qualidades "semelhantes às de drogas".

Outra empresa carro-chefe na descoberta de medicamentos de IA, Atomwise, usa super-computadores que erradicam terapias de um banco de dados de estruturas moleculares. Em 2015, a Atomwise lançou uma busca virtual por medicamentos seguros e existentes que pudessem ser redesenhados para tratar o vírus Ebola. Eles encontraram dois medicamentos previstos pela tecnologia de IA da empresa que podem reduzir significativamente a infeccio-sidade do Ebola. Esta análise, que normalmente levaria meses ou anos, foi concluída em menos de um dia. Imagine quão eficiente se tornaria a criação de medicamentos se tais ensaios clínicos pudessem ser realizados no "marco zero" dos cuidados de saúde, nomeadamente nas farmácias. No momento, a Atomwise ainda não lançou no mercado um medicamento aprovado a partir de suas soluções baseadas em IA. No entanto, a empresa fez avanços significativos na descoberta de medicamentos utilizando a sua plataforma AtomNet, que utiliza aprendizagem profunda para identificar potenciais candidatos a pequenas moléculas.

Para chegar a soluções de tratamento ainda mais precisas, algumas empresas combinam genômica e Inteligência Artificial. Por exemplo, a Cambridge Cancer Genomics (**desde então adquirida pela Dante Labs**) desenvolveu soluções oncológicas de precisão para transformar a forma como os pacientes com câncer são tratados. Eles acreditam que quanto mais dados clínicos e genômicos os oncologistas tiverem, mais decisões inteligentes poderão tomar sobre o uso de medicamentos em qualquer circunstância – e, portanto, usam o aprendizado de máquina e a análise de dados para dar aos médicos esse poder.

Em 2019, eles se uniram à **Precision-Panc**, uma rede no Reino Unido de mais de 20 hospitais que pode oferecer ensaios clínicos de medicina de precisão a pacientes com câncer de pâncreas, buscando desenvolver práticas de padronização lideradas por IA para melhorar a análise, distribuição e compartilhamento de dados em ensaios clínicos.

Outra empresa, a Row Analytics, com sede em Oxford, é especializada em saúde digital, medicina de precisão, genômica e pesquisa semântica. Ela está oferecendo uma variedade de plataformas de análise de dados para descoberta de medicamentos. Essa plataforma combina métodos de IA e análise de dados para observar múltiplas variantes genéticas em combinações de uma série de doenças. Como são capazes de concluir o processo em semanas em vez de meses, mesmo para grandes populações de doenças com dezenas de milhares de pacientes, isso permite a rápida identificação de novos candidatos a medicamentos e de potenciais medicamentos a serem reaproveitados.

Outra forma de modernizar os ensaios clínicos e o processo de testes de medicamentos está na aplicação de tecnologias ao quadro tradicional, através de plataformas online para procurar participantes. Vários serviços online permitem que cada vez mais pacientes participem no processo de criação de medicamentos.

A Startup Antidote, com sede em Londres, tenta preencher a lacuna entre pacientes e pesquisadores que estão desenvolvendo novos medicamentos, permitindo que os pacientes encontrem os ensaios clínicos mais adequados, ajudando os pesquisadores a transmitir as informações de seus estudos mais recentes a milhões de pacientes e até conectando-os diretamente a membros da comunidade médica.

Se mais pacientes tiverem a oportunidade de participar em ensaios, poderão ficar mais envolvidos com potenciais tratamentos ou até mesmo ter acesso a novos tratamentos antes de serem aprovados pela FDA e estarem disponíveis gratuitamente. TesteX, da mesma forma, combina ensaios clínicos com pacientes de acordo com sexo, idade, localização e condição médica. O número desses serviços está crescendo para acomodar a crescente demanda dos pacientes.

O Reino Unido quer estar no topo da revolução da IA. Em novembro de 2020, a Universidade de Cambridge, a GSK e a AstraZeneca assinaram um acordo para criar o Cambridge Centre for AI em medicina (agora chamado de Laboratório van der Schaar).

A Universidade de Oxford, juntamente com os parceiros GSK, AstraZeneca e sistemas de saúde como o NHS, estava construindo o supercomputador mais poderoso do Reino Unido, o Cambridge-1, usado para acelerar pesquisas em imagens médicas, genômica e descoberta de medicamentos.

Finalmente, chegamos a uma tecnologia que parece saída da ficção científica: ensaios clínicos *in silico.* "In silico" refere-se ao uso de modelos computacionais e simulações para estudar processos biológicos e médicos. Essa abordagem evoluiu nos últimos 20 anos, impulsionada pelos avanços na ciência da computação médica e na Inteligência Artificial.

Os métodos *in silico* envolvem três componentes principais: modelagem, visualização e simulação. A modelagem mapeia os elementos de um sistema biológico, a visualização apresenta essas previsões graficamente e a simulação mostra como o sistema muda ao longo do tempo sob diversas condições. Especificamente, um ensaio clínico *in silico* utiliza simulações computacionais personalizadas para o desenvolvimento ou avaliação regulatória de produtos ou intervenções médicas.

Embora ensaios clínicos totalmente simulados ainda não sejam possíveis devido às atuais limitações tecnológicas e biológicas, o seu potencial futuro poderá superar significativamente os ensaios *in vivo* tradicionais. A FDA antecipa que mais da metade de todos os dados de ensaios clínicos virão eventualmente dessas simulações de computador. Quando os ensaios clínicos *in silico* são combinados com a Inteligência Artificial, os modelos virtuais de pacientes podem fornecer respostas à pergunta habitual: "por que é que este tratamento ou medicamento funciona para este paciente, mas não para outro?". Os métodos de construção de IA, nomeadamente aprendizagem automática e aprendizagem profunda, têm potencial para treinar um modelo que será capaz de encontrar padrões e clusters em dados de outra forma não estruturados – e buscar informações que os pesquisadores não esperem estar lá. Além disso, as redes neurais podem ser utilizadas para prever eventos adversos ou para antecipar o possível risco de abandono do paciente e adesão ao tratamento.

Da forma como está hoje, a tecnologia e o conhecimento biológico ainda não existem para simular **100% dos ensaios clínicos.** No entanto, há um progresso significativo na área na forma de órgãos em um chip, como os pesquisadores do Instituto Wyss vêm trabalhando há anos.

Algoritmos aprovados pela FDA na área da saúde

Embora até agora tenhamos olhado para vários campos da saúde e da indústria farmacêutica, bem como certas estruturas onde a Inteligência Artificial poderia fazer a diferença, agora chegamos aos algoritmos inteligentes que não só são promissores, como já provaram ser dignos de utilização clínica. No capítulo anterior, enumeramos principalmente exemplos que são favoráveis para o futuro, mas chegou a hora das soluções de Inteligência Artificial que os reguladores consideraram dignas de aplicação clínica.

Existem três áreas especialmente promissoras: a **IA em aplicações de verificação da pele, a análise de biomarcadores vocais e a análise da tosse** são tecnologias que – pensamos – estão mais próximas de se tornarem amplamente utilizadas nos cuidados de saúde cotidianos.

Aplicativos de verificação de pele são as nossas primeiras apostas na lista de possíveis pioneiros da IA que penetram na saúde. Existem vários aplicativos existentes que funcionam de maneira muito semelhante. Você tira uma foto com seu smartphone de uma lesão cutânea suspeita e envia pelo aplicativo. Primeiro, ele é verificado por um algoritmo de IA, fornecendo uma avaliação rápida para saber se parece maligno, que será seguida por um diagnóstico conclusivo por um dermatologista.

O campo dos biomarcadores vocais está se desenvolvendo de forma constante, com algumas aplicações muito práticas surgindo recentemente. O estudo de 2021 apresenta como a detecção precoce e automatizada do Alzheimer é possível por meio da análise de padrões de voz.

Da mesma forma que os biomarcadores vocais, as análises de tosse e de padrão respiratório são baseadas em padrões de áudio de tosse/respiração, que – visto que haja um conjunto de dados grande o suficiente para treinar o algoritmo – também fornece oportunidades de diagnóstico para detectar infecções ou condições crônicas. Acreditamos que esse é um dos indicadores mais confiáveis para um dispositivo médico e o único parâmetro para software médico crível e preciso, portanto, para avaliar a situação real quando se trata de Inteligência Artificial nos cuidados de saúde.

Embora na Europa a Agência Europeia de Medicamentos possua diretrizes e declarações sobre Inteligência Artificial, o FDA, nos EUA, é o único regulador com instrumentos eficientes em seu kit de ferramentas para avaliar detalhadamente a credibilidade e a precisão dos algoritmos para fins médicos. No entanto, para compreender completamente o que as aprovações da FDA significam para o campo da IA médica, primeiro temos de compreender o que uma aprovação da FDA realmente implica.

Há toda uma escala de aprovações, começando com o envio 510(K) até a aprovação pré-comercialização (PMA). A primeira refere-se a uma submissão pré-comercialização para demonstrar que um dispositivo que visa o lançamento no mercado, mas que não requer aprovação pré-comercialização, é tão seguro e eficaz como outros instrumentos semelhantes com PMA. Este último significa um processo da FDA de revisão científica e regulatória para avaliar a segurança e a eficácia dos dispositivos médicos que apoiam e/ou sustentam a vida humana e as mais rigorosas aplicações de marketing de dispositivos. O caminho para direitos de comercialização de dispositivos foi adicionado para abordar novos dispositivos de risco baixo a moderado que não possuem um dispositivo predicado válido – por exemplo, no caso de soluções de software, como algoritmos inteligentes. Após a revisão bem-sucedida de uma submissão, a FDA cria uma classificação para o instrumento, um regulamento, se necessário, e identifica quaisquer controles especiais necessários para futuras submissões pré-comercialização de dispositivos substancialmente equivalentes.

A FDA tem um banco de dados de dispositivos habilitados para IA/ML atualizado regularmente, listando **882 entradas em maio de 2024.** No entanto, foram necessários muitos anos para que essa autoridade líder fornecesse um banco de dados abrangente dessas ferramentas, e tal empreendimento foi concluído pela primeira vez neste artigo revisado por pares do The Medical Futurist Institute **(TMFI)**, que analisou o estado da regulamentação sobre algoritmos baseados em IA. Usando o FDA como exemplo, os autores foram pioneiros no primeiro banco de dados online de acesso aberto de algoritmos baseados em IA aprovados pela FDA, que o órgão regulador com sede nos EUA já deveria ter elaborado.

Olhando os dados, fica evidente a distribuição de algoritmos inteligentes nas diversas especialidades médicas. A Radiologia é de longe a mais povoada por soluções baseadas em Inteligência Artificial, com **671 algoritmos aprovados.** Os dispositivos cardiovasculares estão em um distante segundo lugar (90 aprovações) e a Neurologia vem em terceiro, com 32.

É interessante verificar que certas especialidades médicas ainda sequer aparecem na lista das faculdades médicas primárias, como a Pneumologia, a medicina legal ou a Dermatologia – esta última especialmente surpreendente dado o grande sucesso dos algoritmos de verificação cutânea.

No entanto, não devemos tirar conclusões definitivas apenas desse conjunto de dados, uma vez que constitui um retrato da situação atual, não revelando necessariamente nada sobre as tendências. Por exemplo, no caso da patologia, embora o número de algoritmos aprovados pela FDA (6) possa ser baixo neste momento, a Inteligência Artificial é uma tecnologia promissora nesse campo – embora possa precisar dos próximos anos para alcançar o número de soluções em Radiologia ou Cardiologia.

Esses dois campos representam as áreas de pico da pesquisa em Inteligência Artificial por vários motivos. Em primeiro lugar, a visão computacional é um dos campos de crescimento mais rápido na IA. O desenvolvimento e a imagem médica têm os dados e a visualidade que os algoritmos inteligentes precisam para prosperar. Como consequência, os pesquisadores descobriram que o software comercial para classificar automaticamente a densidade da mama e, assim, detectar o câncer de mama, pode funcionar em par com radiologistas humanos. Além do mais, em abril de 2018, o FDA aprovou o primeiro sistema de IA que pode ser usado para diagnóstico médico sem a intervenção de um médico humano. Ensaios clínicos em grande escala provaram o quão útil a IA é no apoio ao trabalho dos radiologistas no rastreio do câncer da mama.

Em 2020, o FDA aprovou o primeiro software baseado em IA que foi projetado para auxiliar e orientar médicos não treinados na captura de ultrassonografias de alta qualidade. O software auxilia profissionais médicos sem nenhum treinamento especializado nas etapas de um exame de ultrassom cardíaco – uma das ferramentas mais comuns utilizadas para diagnosticar doenças cardíacas.

Desde então, o órgão regulador aprovou uma série de soluções de diagnóstico baseadas em IA que apoiam o trabalho dos profissionais médicos, e os resultados de ensaios clínicos relacionados também estão a caminho. Em um estudo publicado em **JAMA Cardiology**, em fevereiro de 2021, o software da Caption Health que orienta médicos não treinados passo a passo no fornecimento de um exame de ultrassom cardíaco recebeu aprovação da FDA e provou ser bem-sucedido no diagnóstico de pacientes.

O estudo concluiu que "para as avaliações diagnósticas dos desfechos primários, houve pelo menos 92,5% de concordância entre os exames da enfermeira e do ultrassonografista". Os resultados na vida real não substituirão enfermeiros reais ou pessoal qualificado, mas expandirão o número de profissionais de saúde que utilizam esse dispositivo – levando a serviços hospitalares mais rápidos.

Algoritmos aprovados pela FDA na área da saúde

Consideremos duas hipotéticas ferramentas de assistência baseadas em Inteligência Artificial num ambiente de cuidados de saúde: o algoritmo A e o algoritmo B. O **algoritmo A**, tendo sido rigorosamente treinado em conjuntos de dados existentes, fornecerá resultados robustos sobre o que é conhecido nessas entradas de dados.

Por outro lado, o **algoritmo B,** além de ter sido rigorosamente treinado, analisa dados em tempo real de todo o mundo para obter novos insights e melhorar as suas recomendações. Você escolheria um em vez do outro?

Embora o termo possa não ser familiar para a maioria, algoritmos "bloqueados" em dispositivos médicos são o que as autoridades reguladoras aprovaram no passado recente. O FDA define um algoritmo "bloqueado" como "um algoritmo que fornece o mesmo resultado cada vez que a mesma entrada é aplicada a ele e não muda".

Por exemplo, o KardiaAl nos monitores de ECG portáteis e pessoais da AliveCor foi treinado para detectar anomalias do ritmo cardíaco, como fibrilação atrial. Se o software detectar tal leitura conforme foi treinado para fazê-lo, ele alertará o usuário sobre uma leitura suspeita. Da mesma forma, o algoritmo IDx-DR pode ajudar a rastrear retinopatia diabética a partir de imagens de câmeras retinais, bem como foi treinado para fazer.

No entanto, esses algoritmos adotam a abordagem estática dos algoritmos bloqueados. Se os desenvolvedores quiserem que sua IA seja mais precisa ou sugerir novas opções de tratamento com base em novos dados, eles precisarão treinar a IA em novos conjuntos de dados, testá-los e bloqueá-los novamente antes de lançar um novo conjunto de dados, em versão utilizável que será inspecionada pelo FDA.

Em contraste, um algoritmo adaptativo não requer tal envolvimento ativo e reciclagem por parte de seus desenvolvedores. O FDA define um algoritmo "adaptativo" como aquele que "muda seu comportamento usando um processo de aprendizagem definido". As alterações são implementadas de forma que, para um determinado conjunto de insumos, os resultados possam ser diferentes antes e depois da implementação das alterações, acrescenta a autoridade reguladora.

A vantagem que os algoritmos adaptativos apresentam reside na sua capacidade de aprender continuamente e de se autoaperfeiçoar sem a contribuição de seus desenvolvedores. Isso ocorre porque a necessidade de alteração ou atualização do software só pode se tornar evidente após o lançamento do dispositivo ou software. Um algoritmo adaptativo seria, portanto, capaz de atualizar e aprender com a experiência do mundo real.

Considere como os pesquisadores do Google desenvolveram um algoritmo para detectar retinopatia diabética com 90% de precisão... em teoria. No entanto, na prática, teve um desempenho menos preciso devido a problemas enContrados em ambientes clínicos da vida real, como a qualidade das imagens utilizadas. Neste caso, uma IA adaptativa poderia se adaptar a essas situações para fornecer resultados através do treino em tais tipos de qualidade de imagem, mesmo que não tenha sido inicialmente treinada para o fazer.

Esses tipos de algoritmos representam o próximo passo na IA da saúde e a FDA parece vislumbrar um futuro onde algoritmos adaptativos entrarão na indústria. Isso é sugerido pelo quadro e plano de ação propostos acima mencionados. Neste último, a FDA ainda observou como forneceu em 2020 a autorização de comercialização do software Caption Guidance AI, o primeiro software de ultrassom cardíaco.

Essa aprovação é particularmente notável pelo uso pelo fabricante de um Plano de Controle de Mudanças Predeterminado para incorporar modificações futuras sujeitas à transparência e ao monitoramento de desempenho no mundo real por parte do fabricante. Embora não envolva algoritmos totalmente adaptativos, já que as atualizações serão tratadas principalmente pelo próprio software, tal postura significa um passo em direção à regulamentação de algoritmos adaptativos. É um passo que os reguladores devem tomar para fazer a transição para tais regulamentações na era da IA.

DESAFIOS DE INTELIGÊNCIA ARTIFICIAL

Embora o potencial da Inteligência Artificial para melhorar os cuidados de saúde seja indiscutível, e como mostra o resumo dos algoritmos aprovados pela FDA, o número de softwares operáveis vem crescendo exponencialmente, a integração bem-sucedida da tecnologia em nossos sistemas de saúde está longe de ser inevitável. Para que isso aconteça, precisamos superar as limitações técnicas e médicas, bem como os obstáculos regulamentares. Também precisamos acalmar as preocupações éticas e diminuir a tendência de exagerar na tecnologia. Neste capítulo, resumimos os principais desafios que dizem respeito à tradução da Inteligência Artificial para a vida cotidiana e colocamos as questões que normalmente são levantadas no mundo médico quando se contempla a IA e os anos que virão.

Equívocos e exageros

À medida que a **IA se torna onipresente na medicina,** o fator de hype acima mencionado entra em jogo. Exagerar nas suas potencialidades através de táticas de marketing e representações mediáticas excessivamente simplificadas não ajuda; pelo contrário, destrói uma imagem saudável sobre como a IA poderia contribuir para os cuidados de saúde. Também aumenta a confusão e os equívocos, que precisam ser esclarecidos quando queremos implementar a tecnologia com sucesso nos nossos sistemas de saúde.

As definições de **aprendizado de máquina**, **aprendizado profundo**, **algoritmos inteligentes**, **ANI**, **AGI ou quaisquer outros termos e conceitos relacionados à IA** precisam ser tratados com cuidado. Começa nos primeiros passos, como a linha entre um algoritmo e uma IA. O mesmo se aplica ao seu impacto na saúde.

É por isso que qualquer pessoa interessada na área deve ler estudos e notícias sobre IA com cuidado. É importante em qual revista científica o estudo foi publicado e que tipo de dados os autores utilizaram. Quanto mais imagens, textos ou qualquer outro material de origem os pesquisadores tiverem, mais precisos se tornarão os algoritmos.

No entanto, é muito difícil ter acesso a uma grande quantidade de dados de qualidade, especialmente na medicina. Hospitais e outras instalações médicas, que acumulam dados de saúde há décadas, são mais frequentemente relutantes em fornecer os seus dados sensíveis a algoritmos.

Assim, alguns grupos de pesquisa fazem truques em seu conjunto de dados para torná-lo maior (por exemplo, inverter imagens para dobrar o tamanho do banco de dados). Como leitor de um artigo de pesquisa sobre IA, você deve estar ciente disso.

As colaborações clínicas também são importantes. Se um algoritmo funciona bem em um conjunto de dados pré-selecionado, isso parece bom, mas são os conjuntos de dados clínicos que o tornam excelente. Por exemplo, saber que o Google fez parceria com a Clínica Mayo em vários projetos durante anos apresenta um forte argumento para seus algoritmos.

Além disso, se os autores apenas mencionam a IA, mas não descrevem o método como estão tentando alcançar a Inteligência Artificial, você deve ser cético e cuidadoso. Uma empresa ou grupo de pesquisa mencionando aprendizado de máquina ou aprendizado profundo devem ser capazes de explicar detalhadamente o método com o qual pretendem alcançar os seus resultados.

Em relação às notícias sobre algoritmos inteligentes, como o jornalismo online gira em torno de cliques, curtidas e compartilhamentos, muitos títulos tendem a ser sensacionalistas e clickbait por natureza. Claro, o termo **Inteligência Artificial** é muito mais cativante do que aprendizado de máquina e dizer que os algoritmos vencem os médicos alcançará um público muito mais amplo do que escrever sobre porcentagens e comparações no título.

É por isso que vale a pena consultar o estudo em si ao ler sobre a mais recente conquista fantástica da IA em um artigo online a ler somente a conclusão da pesquisa. Em revistas online de qualidade, o estudo geralmente está vinculado ao artigo, mas se você quiser "jogar pelo seguro" em relação à sua credibilidade, também pode pesquisar o autor e a própria revista médica.

Limitações tecnológicas da IA

O próprio termo **Inteligência Artificial** pode ser enganoso, pois devido ao uso excessivo da expressão, seu significado começou a ficar inflado. Seu significado implica software com cognição e senciência, uma tecnologia muito mais desenvolvida do que a atual e um conceito muito mais provavelmente usado por gurus de marketing para descrever toda e qualquer ferramenta de software que lida com análise de big data.

Na melhor das hipóteses, com a tecnologia atual, os vários métodos de aprendizado de máquina são capazes de alcançar a ANI em vários campos. No entanto, como mencionamos antes, há um crescimento incrível em visão computacional, bem como em processamento de linguagem natural, e no ano passado: lA generativa.

O que os algoritmos executados em computadores cada vez mais poderosos podem fazer atualmente é reconhecer padrões e coletar tópicos de blocos de texto ou derivar o significado de documentos inteiros a partir de algumas frases. No entanto, não estamos no nível da AGI, aquele nível de inteligência em que uma máquina é capaz de abstrair conceitos de experiência limitada e transferir conhecimento entre domínios – e isso provavelmente continuará a ser o caso durante anos ou décadas.

Além disso, em vários casos descobriu-se que os algoritmos de Inteligência Artificial podem ser enganados através de exemplos adversários. Em 2019, um grupo de engenheiros da Universidade de KU Leuven, na Bélgica, mostrou em um estudo como padrões impressos simples podem enganar um sistema de IA projetado para reconhecer pessoas em imagens. Se os alunos imprimissem patches especificamente projetados e segurassem o papel na frente deles, a IA não os reconheceria – como se estivessem envoltos na capa invisível de Harry Potter. Mas as tecnologias estão melhorando, não podemos esperar que eles permaneçam tão facilmente enganáveis por muito tempo.

Cientistas da computação testam regularmente sistemas de aprendizagem profunda com os chamados "exemplos adversários", elaborado para fazer com que as IAs os classifiquem incorretamente, a fim de descobrir as possíveis limitações dos métodos atuais de aprendizagem profunda. No entanto, esses exemplos adversários também poderiam ser usados para enganar carros autônomos em ler um sinal de pare como um poste de luz, por exemplo – ou podem enganar os sistemas médicos de visão de IA projetados para identificar doenças.

Nesse estudo, os pesquisadores testaram sistemas de aprendizagem profunda com exemplos adversários em três tarefas populares de imagens médicas: classificar a retinopatia diabética de imagens da retina, pneumotórax de radiografias de tórax e melanoma de fotos de pele. Nesses ataques, os pixels nas imagens foram modificados de uma forma que poderia parecer uma quantidade mínima de ruído para os humanos, mas poderia induzir esses sistemas a classificar essas imagens incorretamente.

Os cientistas observaram que seus ataques poderiam fazer com que os sistemas de aprendizagem profunda classificassem incorretamente as imagens até 100% das ve-

zes, e que as imagens modificadas eram imperceptíveis das imagens reais ao olho humano. Eles acrescentam que tais ataques podem funcionar em qualquer imagem e podem até ser incorporados diretamente no processo de captura de imagens. Agora, esse é um fenômeno preocupante, pois os hackers poderiam facilmente encontrar uma maneira de atacar softwares médicos baseados em Inteligência Artificial por meio de tais "ataques adversários", seja por fraude médica ou por causar danos propositalmente.

É crucial que o pessoal médico e os participantes do setor de saúde separem o entusiasmo dos fatos em torno da IA na saúde e obtenham um conhecimento bem formado, nem muito profundo, nem muito superficial, sobre o uso da IA.

Limitações dos dados médicos disponíveis

Para construir algoritmos confiáveis, um dos componentes mais importantes é ter conjuntos de dados confiáveis. No entanto, os dados de saúde são uma "fera" difícil. Por conter informações confidenciais, as empresas que tentam criar algoritmos muitas vezes têm dificuldades em obter acesso a dados que não sejam conjuntos de dados disponíveis publicamente.

Além disso, os dados de saúde em si nunca foram elaborados com algoritmos de Inteligência Artificial em mente, pelo que a sua racionalização e categorização exigem um enorme esforço e energia – mesmo no caso de dados digitalizados, como os registros médicos eletrônicos. E apesar da noção generalizada sobre a informatização, os EMRs não estão presentes em todo o lado.

Mesmo com seus problemas específicos por terem sido elaborados mais de acordo com as necessidades dos prestadores do que dos médicos ou pacientes, os registros médicos em papel são os mais inúteis do ponto de vista da IA. Pesquisadores que estudaram cinco grandes instalações médicas, onde hospitais e clínicas usavam registros convencionais de pacientes em papel, relataram que **5% a 10% dos pacientes foram atendidos em clínicas sem um registro disponível,** enquanto **5% a 20% dos registros hospitalares estavam incompletos.** Das Informações faltantes, 75% consistiam em resultados de exames laboratoriais e relatórios de raios X, e 25% em dados textuais perdidos, incompletos ou ilegíveis. Agora, tente criar um algoritmo confiável a partir disso.

O trabalho indispensável dos anotadores de dados

Como mencionado acima, os dados médicos definitivamente não foram coletados com algoritmos inteligentes em mente. Digamos que você queira um algoritmo para detectar tumores de pulmão em radiografias de tórax. Para isso, será necessário utilizar ferramentas de reconhecimento de padrões, como aprendizado de máquina supervisionado – o que tornará a tarefa muito semelhante à de localizar gatos no Instagram.

Parece fácil, não é? Você diz que se a imagem for de um animal peludo com dois olhos e quatro patas, poderia ser um gato. Você descreve seu tamanho, cores potenciais e a aparência de sua bochecha. Ainda assim, e se o animal estiver parcialmente ofuscado por alguma coisa? E se estiver brincando e parecer apenas uma bola de pelo? E, finalmente, como você conta tudo isso ao computador se ele não entende pernas, olhos e animais, apenas pixels?

"Você precisará de milhões de fotos onde as que contêm um gato sejam devidamente rotuladas como tendo um gato. Dessa forma, uma rede neural e, em muitos casos, a chamada rede neural profunda multicamadas, pode ser treinada usando aprendizagem supervisionada para reconhecer imagens com gatos nelas", disse David Albert, MD, fundador e diretor médico da AliveCor, a empresa que vem desenvolvendo um dispositivo de bolso de nível médico para medir EKG em qualquer lugar em menos de 30 segundos. Você não dirá ao algoritmo o que é um gato, mas sim mostrará milhões de exemplos para ajudá-lo a descobrir sozinho. É por isso que os dados e sua anotação são essenciais para a construção de algoritmos inteligentes.

A tarefa de anotar dados é um trabalho demorado e tedioso, sem nenhum dos reflexos prometidos pela Inteligência Artificial associados ao pensamento semelhante ao da ficção científica e aos computadores ou robôs falantes. Na área da saúde, a criação de algoritmos consiste mais na utilização de bases de dados existentes que abrangem principalmente arquivos de imagem, tomografias computadorizadas ou ressonâncias magnéticas, amostras utilizadas em patologia etc. Ao mesmo tempo, a anotação de dados desenhará linhas em torno de tumores, identificará células ou designará ECG.

É isso que o Dr. Albert tem feito. Ele explicou que "você precisa de dados rotulados e anotados com precisão para desenvolver essas soluções de diagnóstico neural profundo. Mas é muito trabalho. Por exemplo, posso anotar ou diagnosticar dez mil ECGs durante várias semanas, depois outro especialista analisa os mesmos dez mil – e então vemos onde discordamos.

Depois disso, temos uma terceira pessoa, que é o julgador – que entra e diz "OK" em relação a esses quinhentos em que você discorda, acho que é isso que eu acho que é a resposta. Portanto, são necessárias pelo menos três pessoas e semanas de trabalho para lhe dar uma resposta razoavelmente confiante. As redes neurais profundas para funcionarem corretamente e aproveitarem as vantagens do big data exigem uma enorme quantidade de trabalho de anotação".

Katharina von Loga é patologista consultora da Royal Marsden NHS Foundation Trust. Há algum tempo, ela explicou como usa a análise de imagens baseada em software para monitorar as alterações das células do sistema imunológico em tumores cancerígenos durante a terapia. O computador a ajuda a contar as células depois que ela designa cuidadosamente o conjunto de células que procura.

"Tenho a imagem de uma mancha na minha frente, onde posso clicar no conjunto específico e anotar que se trata de uma célula tumoral. Então clico em outra célula e digo que é um subtipo de célula imunológica. Ele precisa de, no mínimo, todos os diferentes tipos que especifiquei, só depois disso posso aplicá-lo a toda a imagem. Então, olho a saída para ver se concordo com aquelas que não anotei, mas que o computador classificou. Esse é o processo que você pode fazer indefinidamente", explicou ela.

Às vezes, os anotadores de dados não só precisam de grandes habilidades para reconhecimento de padrões em medicina, mas também é benéfico se forem bons em desenho. Felix Nensa trabalha como professor de Radiologia no Hospital Universitário de Essen. Ele explicou as dificuldades da anotação de dados através de um exemplo em um novo subcampo médico chamado radiônica. "Identificamos uma coorte de 100–200 pacientes com um determinado tipo de tumor e queremos prever se o tumor responde a uma determinada terapia. Para isso, é preciso fazer uma segmentação completa do tumor, uma tomografia computadorizada. Se for câncer de pulmão, então você faz uma tomografia computadorizada completa do pulmão, que inclui cortes do pulmão em uma espessura de corte específica – digamos 5 mm. Então, você tem que traçar uma linha ao redor do tumor em cada lâmina com extrema precisão. É realmente muito trabalhoso traçar uma linha suave em torno desse formato, porque esse tumor podeser muito grande e, na maioria das vezes, não se parece em nada com uma bola."

Ela disse que embora pareça perfeito, em teoria, que você possa treinar um algoritmo dentro de um período de tempo para apoiar o trabalho médico em patologia, a prática é muito mais complicada. Como os arquivos de dados médicos (**obviamente**) não foram criados com algoritmos matemáticos em mente, é um trabalho gigantesco tentar padronizar os processos de amostragem existentes ou ter amostras suficientes "ajustadas por algoritmos". Em sua área, por exemplo, é importante como a amostra foi processada, desde a obtenção da amostra do paciente até que ela esteja sob o controle.

O método de coloração, a idade da amostra, o departamento onde a amostra foi produzida – todos os fatores a serem considerados quando se trata de tomar uma decisão sobre uma amostra para um ensino algorítmico bem-sucedido.

Além dos problemas da enorme variabilidade nas amostras, David Albert também mencionou a falta de especialistas para anotação de dados, bem como a dificuldade de encontrar bases de dados em escala. Normalmente, a precisão de um algoritmo depende do tamanho da amostra – quanto maior, melhor.

No entanto, o líder da AliveCor mencionou como os hospitais ou centros médicos, mesmo os mais engenhosos, não têm dados nem anotações suficientes. Por esta razão, ele acredita que serão necessárias empresas como **Google, Amazon, Baidu ou Tencent,** com recursos financeiros ilimitados e uma presença global, para realmente obter o tipo de escala que é necessário para desenvolver uma lA precisa.

Além disso, o problema dos recursos humanos é agravante. Existem apenas **30—35 mil car- diologistas nos Estados Unidos,** todos muito ocupados. Eles não têm tempo para marcar ECGs. Na mesma nota, existem apenas cerca de **50 mil radiologistas** – eles não têm tempo para ler mais radiografias de tórax. Então, temos que fazer alguma coisa.

Os especialistas mencionam frequentemente a opção de empregar estudantes de medicina ou estudantes de medicina na universidade para tarefas de anotação mais simples – pelo menos para resolver o problema de recursos humanos. David Albert brincou com a ideia de criar cursos online para treinar anotadores em potencial, que posteriormente receberiam alguns incentivos financeiros para anotar milhões de pontos de dados. As instalações médicas poderiam basicamente fazer crowdsourcing de anotações de dados por meio de plataformas como Amazon Mechanical Turk. O processo poderia empregar a "sabedoria das multidões".

Outra opção seria o emprego de algoritmos também para tarefas de anotação – basicamente construindo lAs para ensinar outro software inteligente. Vimos ferramentas baseadas em aprendizagem profunda que podem fazer anotações completamente automáticas por si mesmas, e então o usuário só precisa corrigir onde esse processo automático não funcionou bem.

Katharina também mencionou como os comitês internacionais e nacionais estão trabalhando na padronização dos diversos processos de amostragem, o que poderia realmente facilitar o trabalho de anotação e acelerar a construção de algoritmos. Tudo isso poderia levar a conjuntos de dados melhores e maiores, anotação de dados mais otimizada e IA mais eficiente em todos os subcampos médicos.

Conjuntos de dados de julgamento e preconceito de IA na área da saúde

Não apenas a acessibilidade aos conjuntos de dados e sua adequação formal para se tornarem material de base para um algoritmo se os dados estão ou não corretamente rotulados quanto ao conteúdo é muito importante, mas também a qualidade de elaboração de um algoritmo. Nos últimos anos, descobriu-se que os algoritmos racionais e lógicos que deveriam fazer escolhas fundamentadas e objetivas eram tendenciosos em termos raciais, de gêneros, étnicos ou culturais.

Esperar esses algoritmos inteligentes para tomar decisões imparciais, mesmo na área da saúde, não é algo que devamos fazer. O conjunto de dados no qual uma IA é treinada é extremamente crucial, mas os dados de saúde são, como a revista tecnológica Quartz os chamou, **"extremamente masculinos e extremamente brancos".** Isso tem sérias implicações quando as ferramentas de IA analisam dados fora deste grupo demográfico – ou fora dos falantes nativos de inglês.

Os conjuntos de dados alimentados aos algoritmos estão repletos de injustiças sociais arraigadas. Além disso, os programadores que trabalham nesse software podem, consciente ou inconscientemente, influenciar uma IA. Eles podem implementar valores e crenças sobre o mundo no código de forma despretensiosa, ao mesmo tempo em que deixam de fora alguns parâmetros que seriam mais representativos de outras populações.

Pudemos ouvir de muitos meios de comunicação como o software de reconhecimento facial favorece os rostos brancos, mas um estudo do MIT Media Lab, publicado em fevereiro de 2018, descobriu que os sistemas de reconhecimento facial de empresas como IBM e Microsoft eram 11-19% mais precisos em indivíduos de pele mais clara. Eles eram particularmente ruins em identificar mulheres negras. Os algoritmos inteligentes foram 34% menos precisos no reconhecimento de mulheres de pele mais escura em comparação com homens de pele mais clara. Num outro exemplo, quando a IA foi implementada no sistema de justiça criminal dos EUA para prever a reincidência, descobriu-se que sugeria desproporcionalmente que, independentemente da extensão da ofensa inicial, os negros têm maior probabilidade de comprometer-se em crimes futuros.

Em relação a um exemplo de algoritmo com preconceito de gênero, em 2018, o departamento de RH da Amazon teve que parar de usar sua ferramenta de aprendizado de máquina baseada em IA, desenvolvido para selecionar os melhores candidatos a empregos, pois descobriu-se que o algoritmo inteligente favorecia os homens. Como o cenário tecnológico é dominado principalmente por homens e os dados alimentados pelo software continham currículos dos **10 anos anteriores**, o programa aprendeu sozinho que as mulheres eram candidatas menos preferíveis. Embora os programadores tentassem ajustar a IA, ela ainda não trouxe os resultados esperados, então, no fim, decidiram descartar totalmente o programa.

Seria de se esperar que a situação tivesse melhorado muito nos últimos anos, mas uma análise relativamente recente na contratação de algoritmos da Amazon e do Google provaram o contrário. Mas o que aconteceu aqui? O que deu errado com o algoritmo? Qual é a dificuldade de ensinar a IA?

3 pilares onde um algoritmo inteligente pode ser tendencioso

1. Quantidade e qualidade dos conjuntos de dados

Os algoritmos são treinados em conjuntos de dados, portanto, a qualidade dos dados é crucial no processo. Se o conjunto de dados estiver incompleto, não for suficientemente diversificado ou originar-se principalmente de uma área de estudo, o software de IA poderá funcionar perfeitamente no ambiente de teste, mas apresentar o seu preconceito inerente no "mundo real".

2. Práticas sociais históricas

Outra questão mais complexa é quando o conjunto de dados é suficientemente representativo e diversificado, mas o algoritmo ainda chega a conclusões discriminativas. A razão para isso pode ser uma prática social tão profundamente enraizada na sociedade que será automaticamente transferida para o processo de julgamento da IA. Em suma, essa é a razão dos algoritmos de RH com preconceito de gênero/cor: o programa foi alimentado com inscrições de períodos anteriores, cuja maioria veio de candidatos do sexo masculino e/ou brancos. Como consequência, a IA passou a acreditar que a correlação entre gênero/cor e qualificações nesta área também significava causalidade – e um ponto de referência para seleção.

3. Viés oculto/inconsciente dos programadores

E se o programador precisar escolher ou omitir alguns parâmetros para ajudar o programa a aprender? Ao descrever fatores, variáveis, elementos de uma determinada forma, já são inclusos seus vieses ocultos e muitas vezes inconscientes. Quando os bancos analisam os pedidos de empréstimo com a ajuda de algoritmos, quem decide quem pode obter um empréstimo? O programador, o banco ou um ser humano? Nesses casos, o desenvolvedor de software pode incluir inconscientemente no código seus próprios valores e crenças sobre o mundo, e numa situação ainda mais sensível, talvez com resultados ainda mais arriscados, definir algumas variáveis selecionando características específicas para indivíduos ou grupos – o que pode ter um resultado tendencioso. De qualquer forma, as escolhas individuais podem influenciar muito o modo como os algoritmos inteligentes "se comportam".

Assim, a fonte, a qualidade e a diversidade dos dados, as práticas sociais históricas enraizadas, ou seja, o preconceito da estrutura social mais profunda, bem como as preferências individuais, conscientes ou inconscientes de programadores individuais, determinam se e em que medida uma IA se tornará tendenciosa. Agora, vejamos alguns exemplos de cuidados de saúde, onde muitos acreditariam que, à medida que algoritmos inteligentes analisam imagens médicas, tiras de ECG ou registros médicos eletrônicos, o "fator de preconceito" deve ser menos prevalente.

Bem, vamos trazer alguma desilusão. Até o comediante John Oliver abordou esse preconceito na medicina; em geral, é um problema sério, com consequências para a sociedade americana. Um estudo de 2014 que acompanhou a mortalidade por câncer ao longo de 20 anos apontou a falta de diversos temas de pesquisa como uma das principais razões pelas quais os americanos negros têm uma probabilidade significativamente maior de morrer de câncer do que os americanos brancos. Estudos até encontram preconceitos em modelos de IA que recomendam tratamentos e diagnosticam doenças.

Pesquisadores constataram que quase todos os conjuntos de dados de doenças oculares provêm de pacientes na América do Norte, Europa e China – portanto, o diagnóstico de doenças oculares será enganador noutros grupos raciais. Cientistas de Stanford descobriram que "a maioria dos dados dos EUA para estudos envolvendo usos médicos de IA vem da Califórnia, Nova lorque e Massachusetts".

Em outra área de pesquisa, a meta-análise analisando **2.511 estudos de todo o mundo,** descobriu-se que **81% dos participantes** em estudos de mapeamento do genoma eram descendentes de europeus.

Isso tem graves impactos no mundo real: os investigadores que descarregam dados disponíveis publicamente para estudar doenças têm muito mais probabilidade de utilizar os dados genômicos de pessoas de ascendência europeia do que aqueles de ascendência africana, asiática, hispânica ou do Médio Oriente. E esses conjuntos de dados distorcidos seriam os pontos de partida para o desenvolvimento da IA.

Às vezes, a ignorância do preconceito inerente aos dados pode até comprometer a aplicabilidade de um algoritmo. Os Laboratórios Winterlight, uma startup com sede em Toronto que está desenvolvendo testes auditivos para doenças neurológicas, percebeu depois de um tempo que sua tecnologia só funcionava para falantes de inglês de um determinado dialeto canadense. Isso também pode ser um problema sério para outras empresas que trabalham com tecnologias de voz para texto, biomarcadores vocais ou assistentes digitais semelhantes à Siri para cuidados de saúde.

O preconceito relacionado com a raça também foi a razão por detrás de muitas consequências graves nos cuidados de saúde durante a covid-19. Um estudo de 2020 concluiu que, nos EUA, os indivíduos negros tinham duas a três vezes mais probabilidade de morrer de covid-19 do que os pacientes brancos. Disparidades semelhantes também aparecem em uma série de outras programações de IA, como em um algoritmo preditivo que o sistema de saúde dos EUA está usando para orientar as decisões de saúde.

Além do mais, esse estudo provou que o viés sistemático nos modelos de IA pode piorar a precisão do diagnóstico dos médicos em 11,3 pontos percentuais: embora a precisão do diagnóstico de base dos médicos seja de cerca de 73%, caiu para 55,1% quando uma IA tendenciosa impactou a sua tomada de decisão.

Então, o que devemos fazer para eliminar esses preconceitos na programação de algoritmos inteligentes? Na verdade, é uma tarefa muito difícil, pois os seres humanos têm os seus próprios preconceitos no pensamento – e isso tem sido uma característica útil há milhares de anos, pois encurta o tempo necessário para fazer snap.

Também é provável que o preconceito humano tenha vindo para ficar, e as tecnologias alimentadas com informações criadas no mundo real possam fundamentalmente ter o mesmo resultado. Então, agora a questão é: como você pensa sobre a situação quando você está realmente transformando uma tarefa cognitiva em uma máquina, que não tem o mesmo tipo de reação qualitativa que os seres humanos terão?

A resposta pode ser dupla e ainda em evolução. Primeiro, temos que aumentar a conscientização sobre o preconceito inerente aos algoritmos. Em 2019, policiais levantaram preocupações sobre o uso de ferramentas "tendenciosas" de Inteligência Artificial, reveladas por um relatório encomendado por um dos órgãos consultivos do governo do Reino Unido. O relatório disse que os policiais estavam preocupados com o viés de dados e com a crescente dependência da automação. Outro exemplo semelhante foi a proibição do reconhecimento facial por software das ruas de São Francisco. Ativistas e políticos, que pressionaram pela lei, citaram estudos que mostraram que a tecnologia de reconhecimento facial baseada em IA é menos precisa na distinção entre mulheres e pessoas de cor. Esse é um movimento eficiente que pode ser seguido por muitos outros.

Porém, como segundo passo, talvez tenhamos de recriar essas funções, como a tecnologia de reconhecimento facial, para representar uma atitude mais equilibrada através da minimização de preconceitos. Esse é um processo complicado e difícil, especialmente porque a maioria dos algoritmos de IA é treinada em conjuntos de dados tendenciosos, e os pesquisadores estão apenas começando a trazê-los para o mundo real. Curiosamente, novos algoritmos podem vir como uma solução.

Além disso, alguns outros exemplos estão surgindo. Como uma estranha reviravolta nos acontecimentos, uma startup nos EUA que está desenvolvendo uma ferramenta baseada em aplicativo que pode ajudar os médicos a identificar pacientes em risco de suicídio, recebeu uma doação do Instituto Nacional de Saúde para eliminar preconceitos em suas plataformas.

Resumindo, o preconceito não é um problema fácil de resolver. No entanto, os profissionais médicos devem aplicar análises de justiça "rigorosas" antes da utilização de ferramentas baseadas em IA. Isenções de responsabilidade claras sobre o processo de coleta do conjunto de dados e o potencial viés resultante também poderiam melhorar as avaliações para uso clínico.

A necessidade de regulamentar a IA

A FDA aprovou o primeiro algoritmo de aprendizagem profunda baseado em nuvem para imagens cardíacas desenvolvido pela Arterys em 2017 (agora denominado Tempus Radiology). Desde então, o regulador dos EUA aprovou muitos algoritmos inteligentes. No entanto, as regulamentações em torno da IA geralmente ficam para trás ou ainda são literalmente inexistentes. Com a tecnologia avançando e já aparecendo nos hospitais, os decisores e os decisores políticos de alto nível não podem se permitir não abordar a questão.

Em vez disso, deveriam estar à frente das ondas tecnológicas e orientar o processo de implementação da IA nos cuidados de saúde de acordo com os princípios e padrões éticos que possam elaborar com outras partes interessadas da indústria. Além disso, devem incentivar as empresas a colocarem na mesa soluções de IA acessíveis e a manterem sempre o foco no paciente. Os governos e os decisores políticos também devem ajudar a estabelecer normas sobre a utilização da IA, uma vez que precisamos de orientações específicas desde as unidades mais pequenas (profissionais médicos) até às mais complexas (sistemas de saúde em nível nacional).

Embora exista uma necessidade urgente de uma ação coordenada por parte dos decisores políticos para regular o software baseado em Inteligência Artificial e outras tecnologias inovadoras, receia-se que os membros da arena política não estejam necessariamente à altura da tarefa. Quando Mark Zuckerberg teve uma **audiência no Congresso dos EUA**, embora houvesse alguns membros do Senado, bem como da Câmara dos Representantes, que fizeram perguntas relevantes e demonstraram o seu conhecimento e interesse, infelizmente, a principal conclusão foi que os políticos entendem pouco de como funciona o mundo da tecnologia. Às vezes, quando perguntas como aquela sobre como o Facebook pode se sustentar quando oferece seus serviços gratuitamente apareceu online após a audiência, foi difícil decidir se era apenas um meme ou se alguém realmente perguntou isso a Zuckerberg. Se os políticos e legisladores têm tantos problemas com as questões de gestão de dados de um site de mídia social (e não se engane aqui, estamos cientes de que é um tema complicado), como eles irão regular a inteligência artificial, a robótica, a realidade virtual ou os aplicativos de saúde? Como eles irão lidar com tópicos onde vidas humanas estão em jogo?

E a situação não melhorou muito nos últimos anos. A política global parece ter dificuldade em compreender a revolução em curso da IA. Os políticos são frequentemente culpados por não compreenderem a tecnologia, e o **roteiro de IA de US\$ 32 bilhões** publicado após um ano de trabalho intensivo por um grupo de senadores bipartidários foi duramente criticado. Embora os senadores tenham consultado os gurus da tecnologia Elon Musk, Mark Zuckerberg, Bill Gates e Sundar Pichai, o plano de 33 páginas foi chamado de "patético" pelos seus críticos.

Da mesma forma, a Lei de IA da União Europeia também gerou críticas mistas, embora muitos pensem que é um grande precedente e um exemplo a seguir, outros observam como não salvaguarda os direitos humanos básicos, e como isso pode sufocar a inovação.

A ética da IA

Embora as capacidades de análise e previsão dos algoritmos inteligentes estejam ancoradas em casos anteriores e, portanto, possam ser bastante inúteis em novos casos de efeitos secundários de medicamentos ou resistência ao tratamento, esses tipos de problemas, juntamente com as limitações tecnológicas e relacionadas com os dados, ainda serão mais fáceis de ultrapassar do que questões éticas e legais.

A fim de dar tempo e espaço para mapear os potenciais riscos e desvantagens, a ANI e, a certa altura, a AGI, devem ser utilizadas de forma cautelosa e gradual. Grupos independentes de pesquisa bioética (assim como órgãos de vigilância médica) devem monitorar de perto o processo. Curiosamente, há alguns anos, esse era o foco de uma empresa de pesquisa de IA sem fins lucrativos, quase completamente desconhecida, que pretendia descobrir e implementar o caminho para uma inteligência artificial geral segura.

Eles foram chamados de **Open Al Foundation**, e vimos até que ponto eles avançaram (e o quanto mudaram) nos últimos anos.

Quem mais responderá a perguntas como quem é o culpado se um algoritmo inteligente cometer um erro e não detectar um nódulo cancerígeno numa radiografia do pulmão, além de bioeticistas, filósofos, futuristas e grupos de investigação sem fins lucrativos? Para onde nos podemos voltar se a IA apresentar uma previsão falsa? Quem pode criar medidas de segurança na IA para que ela não se volte contra os humanos? E se os algoritmos desafiarem não apenas os humanos cognitivamente, mas também no nível dos sentimentos? Quais serão as regras e regulamentos em torno de uma decisão sobre segurança?

Como estamos completamente intrigados com estas questões e dilemas, escolhemos alguns dos mais importantes e tentamos trazer uma resposta.

Você poderia processar algoritmos de diagnóstico ou robôs médicos no futuro?

E se um algoritmo erra um diagnóstico, o médico aceita a opinião e um paciente morre? Quem será responsabilizado no futuro, quando a IA, agindo de forma autônoma, prejudicar os humanos?

Vamos imaginar um cenário futuro. Em 2041, Andrea foi a Milão fazer um check-up no seu clínico geral porque sentia enjoos o tempo todo e notava uma pressão estranha no lado esquerdo da cabeça. **O médico sugeriu alguns exames e informou-a sobre a inclusão de um algoritmo de diagnóstico no procedimento.** O algoritmo de aprendizado de máquina foi treinado para identificar tumores cerebrais – um dos primeiros estudos na área remonta a março de 2018 – com uma precisão muito elevada. Na maioria dos casos, diagnosticou tecidos cancerígenos muito melhor do que histopatologistas treinados, mas no caso de Andrea algo deu errado.

O algoritmo encontrou algo diferente do diagnosticador e, como **o uso de IA já era prática comum,** o histopatologista não questionou o julgamento. Como resultado, Andrea foi maltratada: uma operação desnecessária, curas medicamentosas ineficazes e longas semanas se passaram até que alguém descobrisse o erro algorítmico. Porém, o cérebro do paciente já sofreu danos irreversíveis e a família decidiu entrar com uma ação judicial.

Dizer que temos aqui um raciocínio altamente teórico, sem conhecer os detalhes que refinam cada caso até ao ponto em que existe um determinado paciente com uma determinada condição num determinado dia e num determinado local. Permanecendo no nível teórico, porém, David Harlow, um advogado, consultor e blogueiro de saúde baseado nos EUA com foco em saúde digital disse que ainda vale a pena dividir o caso em categorias-chave de preocupação: falhas de design, falhas de implementação e erros do usuário.

Assim, quando olhamos para o encontro da tecnologia com o médico e o paciente, dependendo do caso, pode haver uma falha de design – caso em que a empresa pode ser responsabilizada; uma falha de implementação, caso em que o médico ou o enfermeiro poderão ser responsáveis; e erro do usuário, que pode ser atribuído ao paciente. Aqui, estamos assumindo que não houve erro do usuário, o paciente não poderia ter feito nada diferente, então nossos casos poderiam se resumir a falhas de design ou falhas de implementação.

Em primeiro lugar, vale a pena examinar as diferenças nas tecnologias quando se olha para o caso hipotético acima mencionado. No caso de tecnologias analógicas – a primeira camada de tecnologias ou tecnologias tradicionais – que fornecem dados ou permitem aos utilizadores aceder aos dados sem qualquer algoritmo (por exemplo, estetoscópio); quando uma falha de projeto causa danos aos pacientes, "o primeiro passo no caminho para poder responsabilizar a empresa é muitas vezes uma visita ao FDA, buscando um recall do dispositivo médico por não cumprimento da aprovação do FDA", diz Harlow.

No caso das tecnologias digitais, que constituem a segunda camada de tecnologias quando se olha para o nível de avanço, que possuem algoritmos programados sem que o código mude por si só (por exemplo, software de registos médicos, a situação pode ser semelhante. De acordo com Harlow, eles podem ser considerados uma "caixa preta", ou seja, "um sistema que recebe algumas entradas e produz um resultado, sem permitir que o médico leia o resultado, uma visão do algoritmo que conduz a análise, é regulado como um dispositivo médico", o procedimento pode ser semelhante ao da tecnologia analógica.

A terceira categoria de tecnologias pode ser a mais interessante e mais problemática de regular e lidar – aprendizagem profunda ou algoritmos de aprendizagem automática para diagnósticos em radiologia e patologia. Aqui, Harlow pergunta como sabemos se o algoritmo está progredindo na direção "certa". Ele diz que, nestas circunstâncias, há pelo menos dois corpos de pensamento que se cruzam e que devem afetar a tomada de decisão do médico quando utiliza IA: aprovação regulamentar e padrão de cuidados. No primeiro caso, supondo que o FDA (ou análogo) possa aprovar uma ferramenta de aprendizado de máquina que mudará com o tempo.

Sem a aprovação regulamentar de um dispositivo, este não pode ser utilizado na prática clínica. No segundo caso, o dispositivo precisa ser permitido ou exigido pelo atual consenso profissional sobre a prática da medicina para ser considerado dentro dos limites da prática **(ou seja, não é má prática usá-lo).**

Assim, a prática jurídica também pode tentar criar uma "caixa preta" a partir de algoritmos de aprendizagem automática; no entanto, isso pode ser mais problemático aqui do que no caso de outras tecnologias digitais, pelo que a responsabilidade pode recair sobre a empresa que cria o algoritmo.

Indo mais adiante no caminho legal, quando não há nenhuma falha de projeto comprovada no caso, temos que examinar se o patologista ou flebotomista ou qualquer outro médico usou o dispositivo como deveria ser usado. Harlow diz que, no nosso caso, o profissional está sujeito a responsabilidade se tiver usado a ferramenta em uma situação fora do escopo de sua aprovação regulatória, ou se a tiver usado indevidamente, ou se a tiver aplicado apesar de um questionamento profissional significativo sobre a validade das evidências que cercam a ferramenta ou com conhecimento do fabricante da ferramenta ofuscando fatos negativos. Em qualquer outro caso, a bola recai sobre os criadores e as empresas.

E se formos ainda mais longe e imaginarmos robôs alimentados por IA no futuro? O que faremos com criaturas parecidas com Sophia, que já possuem cidadania na Arábia Saudita? O que faremos com algoritmos de aprendizado de máquina totalmente autônomos, tomando decisões com base em seu julgamento como resultado de considerações que podem estar fora da percepção humana?

A União Europeia parece estar a experimentar um novo estatuto jurídico para o futuro. Um relatório do Parlamento Europeu do início de 2017 sugeriu que robôs com autoaprendizagem poderiam receber "personalidades eletrônicas". Tal estatuto significaria apenas que os robôs poderiam ser segurados individualmente e responsabilizados pelos danos caso se tornassem desonestos e ferissem pessoas ou danificassem propriedades. E como as partes prejudicadas receberiam qualquer indenização? Existe uma ideia, por exemplo, de criar um regime de seguro obrigatório que poderia ser financiado pela riqueza que um robô acumula ao longo do tempo da sua "existência".

A decisão dividiu os legisladores europeus e os especialistas e investigadores em IA também criticaram o relatório por permitir que os fabricantes se livrassem das suas responsabilidades. No entanto, a ideia pode ser uma solução criativa para uma crescente área cinzenta na legislação sobre negligência médica. Outras noções e princípios jurídicos igualmente prospectivos serão necessários para o futuro próximo, como estimou Harlow, os primeiros cenários com inteligência artificial estreita poderão chegar já este ano aos escritórios de advocacia de negligência médica.

Os algoritmos deveriam imitar a empatia?

Você identificaria se o seu médico de atendimento remoto fosse uma IA? Eu sei, isso parece rebuscado, algo como o dilema de um filme de ficção científica. Mas e se não for? É um fato que milhões de profissionais de saúde estão desaparecidos em todo o mundo. Se perderemos **10 milhões** ou **18 milhões** depende de para quem você pergunta. Sabemos também que o número de pacientes que necessitam de cuidados de saúde só aumenta. E também parece bastante óbvio que, com os atuais modelos de formação médica (e de financiamento dos cuidados de saúde), nunca seremos capazes de preencher essa lacuna. Assim, esperar que a IA intervenha e assuma algumas das tarefas dos profissionais humanos parece lógico. E necessário.

A IA e as personas falsas estão se tornando cada vez mais convincentes. Assim como a "atriz" sedutora de um vídeo parece bastante humano. E, claro, não vamos esquecer o quão humano o **ChatGPT4** soa enquanto conta uma história para dormir. Em alguns anos, podemos esperar conversar por vídeo com uma IA que parece tão humana quanto o seu médico.

E com base em como algumas empresas e prestadores de serviços gostam de induzi-lo a acreditar que seu chatbot é uma pessoa real, podemos esperar o mesmo para o Dr. Al fornecido a você por sua seguradora médica, respondendo às suas perguntas sobre os sintomas que você experimenta.

Seria bom saber que esse é um cenário impossível, e os reguladores garantirão que você nunca se encontrará numa situação como a que descrita acima. Mas isso pode ser um pouco otimista demais, e é melhor nos prepararmos para um admirável mundo novo, onde detectar um ser humano profundamente falso se tornará uma habilidade importante.

Os chatbots como treinadores de vida parecem igualmente surpreendentes e assustadores. Extensas pesquisas estão sendo realizadas no campo da aplicação de características humanas, emoções, gestos e reações à tecnologia digital. O conceito também levanta milhares de questões. Os algoritmos poderiam ter empatia? Emoções? Como isso impactaria a relação médico-paciente?

O toque humano é a parte fundamental da prática da medicina. É parte integrante da relação médico-paciente, onde os pacientes sentem que são cuidados por outro ser humano, não estão sozinhos na necessidade. Existe alguém que não apenas entende seu problema cognitivamente e oferece uma solução, mas também pode facilmente "colocar-se no lugar da outra pessoa" em primeiro lugar. A pesquisa prova que essa habilidade aumenta significativamente o processo de cura. Por exemplo, pacientes com diabetes que tiveram médicos compassivos tiveram uma taxa menor de complicações da doença do que seus pares. Pessoas que pegaram um resfriado comum perceberam sua condição menos grave quando encontraram um profissional médico empático. Somos seres sociais — precisamos de um cuidador que nos diga que tudo vai ficar bem. Mas então surge a questão: **por que estamos construindo chatbots como o Woebot ou assistentes virtuais?**

No alvorecer dos cuidados de saúde modernos, por volta da viragem do século 18, os profissionais médicos começaram a se distanciar dos pacientes, não olhando para eles como pessoas, mas sim como casos médicos portadores de sintomas a resolver com a ajuda da ciência. O filósofo francês Michel Foucault chegou a dedicar um livro para explicar o que aconteceu em torno do nascimento da clínica moderna. Tem sido um processo desumanizante para pacientes e médicos. Pessoas com problemas são consideradas apenas números (estatísticos) e sintomas em salas de espera lotadas, enquanto os médicos têm, em média, apenas alguns minutos para cada paciente e precisam continuar com sua agenda lotada o mais rápido possível. Assim, não é surpreendente que os pacientes que enfrentam médicos mal-humorados tentem recorrer à empatia vinda de outro lugar, e a tecnologia digital tente explorar essa lacuna existente.

E por que os profissionais médicos têm tão pouco tempo para os pacientes? Eles sofrem com o peso da administração, com tarefas horríveis e monótonas e com a falta de colegas. A escassez de médicos é um fenômeno global. A Organização Mundial da Saúde (OMS) estima que existe uma escassez mundial de cerca de 15 milhões de médicos, enfermeiros e profissionais de saúde aliados e prevê-se que a situação melhore apenas ligeiramente até 2030, quando se prevê que 10 milhões de pessoas estarão desaparecidas dos sistemas de saúde globais. Ao mesmo tempo, a necessidade de serviços de saúde está a aumentar: as doenças estão se tornando mais fáceis de contrair, as doenças civilizacionais como a diabetes e a obesidade estão aumentando, enquanto as sociedades envelhecidas necessitam cada vez mais de cuidados. Portanto, assistentes médicos virtuais ou chatbots de saúde com uma pitada de empatia aproveitam o momento e reivindicam seus lugares como novos ajudantes de profissionais médicos.

Olhando para o lado prático e para os fatos concretos, parece que as tecnologias digitais, capazes de chegar aos pacientes através da empatia e da compaixão, deveriam ter um lugar nos cuidados de saúde. No entanto, do ponto de vista da relação humano-tecnologia, bem como das interações entre os próprios humanos, é mais problemático. Os pacientes confiariam ou aceitariam chatbots baseados em IA como companheiros em tempos difíceis?

E qual é a razão psicológica ou individual pela qual queremos programar algoritmos para emitir emoções humanas? Será mais um passo de estranhamento e alienação num mundo já alienado, cheio de smartphones e televisões? Torna-se tão difícil chegar a pessoas reais e envolver-se em relações significativas que a solução parece ser construir um eco do espectro emocional humano?

Será uma coincidência que a investigação e o desenvolvimento de robôs empáticos e emocionalmente carregados sejam os mais avançados no Japão, onde mais de **70% das pessoas solteiras com idades entre 20 e 49 anos** não têm relacionamento com alguém do sexo oposto? Será que as gerações futuras poderão crescer com robôs empáticos e algoritmos emocionais? Queremos criar uma tecnologia tão emocionalmente inteligente que eles não serão mais capazes de distinguir entre um pedido de desculpas humano e um não humano?

Existem tantas questões éticas e morais e resultados possíveis em relação ao fortalecimento da tecnologia com características humanoides. No entanto, o tempo urge para descobrir as nossas possíveis respostas e atitudes em relação às máquinas emocionalmente inteligentes, uma vez que estão em curso experiências para modelar emoções humanas com a ajuda de máquinas e já existem resultados surpreendentes.

Em 2013, Mark Sagar e sua equipe da Soul Machines começaram a trabalhar em um projeto de pesquisa chamado BabyX, uma nova forma de bebê virtual de inspiração biológica, alimentado por IA e modelado de acordo com o funcionamento já conhecido do organismo humano. Hoje a empresa está a trabalhar para explorar os modelos de comportamento humano – e para criar seres digitais autônomos, máquinas que possam aprender, interpretar e interagir com o mundo à sua volta da mesma forma que os humanos fazem. E adivinha? Se olharmos em volta, aqui estão eles, os robôs humanoides chegaram e estão se tornando acessíveis (imagine a reunião em que a equipe deve ter feito um brainstorming sobre a maneira mais assustadora possível para apresentar nosso novo amigo robô e conseguiu!).

Mas voltando ao que é importante para os pacientes, os profissionais médicos, bem como para as empresas de tecnologia: as emoções artificiais não podem substituir a interação humana, a empatia e a compaixão. Mas um gesto codificado vindo de uma máquina pode atingir o seu objetivo de oferecer conforto temporariamente, especialmente quando as suas limitações são plenamente reconhecidas e aceitas. Portanto, se você não espera que a máquina aja como um ser humano real com reações únicas, mas sim como um robô programado com respostas e gestos previsíveis, você não pode ficar desapontado.

A IA poderia resolver a crise de recursos humanos na área da saúde?

Os especialistas estão pessimistas no que diz respeito à situação dos recursos humanos na saúde. Existem tendências preocupantes quanto ao desequilíbrio entre a oferta e a procura de profissionais médicos, estima-se que a escassez global na saúde com base nas necessidades é de cerca de **17,4 milhões** de profissionais. Isso representa quase toda a população do Chile e o dobro da população que vive na Áustria ou em Israel.

A Estratégia Global da OMS sobre Recursos Humanos para a Saúde: Força de Trabalho 2030 relata que a escassez pode chegar a 10 milhões de médicos, enfermeiros e parteiras em todo o mundo até 2030. Os EUA poderão ver uma falta de até **139 mil médicos até 2033,** de acordo com um relatório publicado em junho de 2020 pela Association of American Medical Colleges.

Nos próximos anos, o Sudeste Asiático necessitará de aproximadamente mais **7 milhões de profissionais de saúde** para alcançar uma cobertura suficiente, enquanto a zona do Pacífico Ocidental, que inclui pesos pesados regionais como a China, a Coreia do Sul e o Japão, terá cerca de **1,4 milhão** de pessoas desaparecidas. A situação não é nem um pouco melhor na Europa, onde o envelhecimento da população, o esgotamento relacionado com a covid-19 e a falta de boa educação e motivação agravaram o problema.

Ao mesmo tempo, o número de pessoas que vivem na Terra aumenta dia a dia. De acordo com o Relógio Mundial da População, num determinado dia, há mais do dobro de nascimentos do que de mortes, enquanto cerca de **8,1 bilhões** de pessoas povoam a Terra neste momento. Paralelamente, a esperança de vida está a aumentar e as populações estão a envelhecer. De acordo com dados do relatórioda ONU sobre o Envelhecimento da População Mundial, prevê-se que o número de pessoas idosas — aquelas com 60 anos ou mais — duplique para 2,1 bilhões em 2050, enquanto o número de pessoas com 80 anos ou mais deverá triplicar entre 2020 e 2050, atingindo **426 milhões.** Acompanhados de melhores diagnósticos, esses números aumentam o fluxo de pacientes, colocando mais pressão sobre os sistemas de saúde.

Estas estatísticas não só esclarecem a grande amplitude do problema, mas também o fosso cada vez maior entre a oferta e a procura. Assim, a crise da força de trabalho no setor da saúde deve-se ao envelhecimento da população e a uma maior necessidade de cuidados crónicos, à escassez mundial de médicos – e ao envelhecimento e esgotamento dos próprios médicos. Alguns países experimentam aumentar o número de estudantes de medicina e tornar os seus sistemas de saúde mais atrativos. Por exemplo, Singapura aumentou o número de estudantes na sua formação médica exponencialmente desde 2015, e também diminuiu a lista de escolas médicas estrangeiras aprovadas de 160 para 103 na tentativa de tentar manter os médicos dentro do país.

Contudo, a longo prazo, esses incentivos poderão não ser suficientes para atrair pessoas para a profissão médica, uma vez que a quantidade de trabalho aumentará paralelamente à crise dos RH. É aí que a tecnologia digital, mais especificamente a Inteligência Artificial, poderá chegar e salvar o dia.

Em seu estudo, o Medical Futurist Institute argumenta que a **Inteligência Artificial Estreita (ANI)** tem maior probabilidade de ser utilizada na prática médica para analisar grandes conjuntos de dados, encontrar novas correlações e, em geral, apoiar o trabalho dos cuidadores. Os serviços baseados em IA poderiam facilitar diagnósticos, administração, tomada de decisões, análise de big data, educação de pós-graduação mais precisos, entre outros.

Conforme destacado anteriormente, algoritmos inteligentes podem ajudar os profissionais médicos na elaboração de planos de tratamento e na descoberta dos métodos mais adequados para cada paciente.

Podem assumir tarefas repetitivas e monótonas, para que médicos e enfermeiros possam concentrar-se no seu trabalho real, em vez de, por exemplo, lutarem contra a burocracia. No futuro, os assistentes cognitivos poderão priorizar e-mails nas caixas de entrada dos médicos ou mantê-los atualizados com a ajuda de encontrar os estudos científicos mais recentes e relevantes em segundos.

Além disso, o seu poder transformador pode torná-lo tão essencial quanto o estetoscópio, o símbolo da medicina moderna, que surgiu no século 19. Sem dúvida, precisamos enfatizar que a prática da medicina não é de forma alguma um processo linear. Existem elementos e parâmetros que não podem ser simplesmente traduzidos para uma linguagem de programação. No entanto, existem áreas onde uma ANI poderia definitivamente melhorar os resultados dos pacientes e aliviar a carga da equipe médica.

Infelizmente, a **ANI não é uma arma milagrosa e muitos desafios surgirão da tecnologia.** Por um lado, existe o encargo financeiro: o custo das tecnologias disruptivas pode ser demasiado elevado para os países subdesenvolvidos, deixando-os ainda mais para trás na melhoria dos cuidados de saúde. Por outro lado, surgem muitas questões técnicas e éticas. Que elementos das tarefas repetitivas dos médicos, como tomar notas ou tarefas administrativas, poderiam a IA facilitar; e quais, como diagnóstico, tratamento ou monitorização, poderia facilitar? A maioria dos médicos usa ferramentas online para ajudar na pesquisa. Existe realmente uma diferença quando se trata de usar IA? A IA deveria ser tratada como outra ferramenta, como um estetoscópio, ou como uma entidade individual?

Do lado dos pacientes, será que eles manterão o toque humano quando a escassez simplesmente não lhes dá a oportunidade de encontrar pessoalmente um médico para cada questão médica? E se os algoritmos de IA puderem imitar a empatia por meio de um aplicativo ou chatbot? Ainda não se sabe se eles aceitarão o uso da IA na tomada de decisões e aprenderão como usá-la sob seus cuidados.

(Cuidado: a Microsoft patenteou um chatbot que poderia tornar possível ter uma conversa virtual com entes queridos falecidos anos atrás, e a IA generativa apenas impulsionou essa tendência perturbadora, o que, aliás, pode prejudicar a nossa saúde mental.)

Na era da saúde digital, o auxílio da tecnologia na formação do pessoal médico está lentamente assumindo um lugar central. Simuladores de realidade mista foram mostrados ser uma opção viável para treinar estagiários de ortopedia. Da mesma forma, cirurgiões treinados em realidade virtual **(VR)** demonstraram um aumento significativo no seu desempenho geral quando comparado aos cirurgiões tradicionalmente treinados.


Uma nova opção se mostrou recentemente promissora em um estudo recente: a Inteligência Artificial. Uma avaliação cognitiva recente liderada pelo Dr. Jason Harley, da Universidade McGill, fez com que **70 estudantes de medicina realizassem cirurgia virtual de tumor cerebral em um simulador.** Os participantes foram divididos em três grupos: um recebendo instruções do Virtual Operative Assistant **(VOA)**, um tutor de IA para ensinar técnicas cirúrgicas seguras e eficientes e fornecer feedback personalizado; um segundo grupo em contato com um instrutor especialista remoto; e um terceiro grupo de controle que não recebeu nenhuma instrução.

Os pesquisadores descobriram que aqueles treinados com o tutor de IA apresentaram desempenho 35% melhor e aprenderam habilidades cirúrgicas **2,6 vezes mais rápido do que aqueles que receberam instruções remotas de um tutor humano.**

Usar tutores de IA para treinar estudantes e profissionais de medicina ainda é um conceito iniciante, com exemplos iniciais postos em prática. Mas, como mostrou o recente estudo da Universidade McGill, essa abordagem tem potencial para proporcionar formação eficaz e está gerando discussão sobre o assunto.

Ao nível da sociedade, ajudará a mudar o foco do tratamento para a prevenção? A IA aumentará o custo dos cuidados? Será que os médicos e profissionais da área médica poderão se tornar mais eficientes porque a IA lida com algumas das tarefas demoradas? Os médicos prestarão melhores cuidados em regiões subdesenvolvidas com o uso da IA? E, de modo geral, como isso mudará (se é que mudará) as atuais estruturas das apólices de seguro?

E o mais importante: a Inteligência Artificial substituiria os médicos?

PROFISSIONAIS MÉDICOS, IA E A ARTE DA MEDICINA

No alvorecer da **Quarta Revolução Industrial,** a automação e a digitalização dos nossos mundos e locais de trabalho continuam mudando o mercado de trabalho, a natureza de muitos empregos e até mesmo o conceito do que significa estar trabalhando. Muitos temem que os robôs e a automação tomem os seus empregos e os deixem sem alternativas, não apenas os médicos. O fenômeno não é novo: no século 19, membros do movimento ludita – trabalhadores têxteis e tecelões – destruíram máquinas de tecelagem em protesto e temiam que as máquinas ocupassem o seu lugar na sua indústria.

Os mesmos temores surgem na área da saúde sobre a IA assumir os empregos dos radiologistas, robôs superando as habilidades dos cirurgiões ou reduzindo o trabalho humano na indústria farmacêutica. Uma voz renomada em tecnologia, Kai-Fu Lee, fundador da empresa de capital de risco Sinovation Ventures, disse à CNBC que a IA será maior do que todas as outras revoluções tecnológicas e os robôs deverão substituir 50% de todos os empregos na próxima década. Depois de uma pandemia como a covid-19 que abalou o nosso mundo, é cada vez mais provável que os robôs ganhem impulso devido à necessidade de uma "força de trabalho que nunca fique doente" cresce.

À medida que crescem exponencialmente os receios de perder a batalha contra as novas tecnologias, já surgiram alternativas em níveis individual e social. O conceito mais popular em nível político é a introdução do rendimento básico universal; nesse caso, o governo daria a todos o dinheiro suficiente para viver, ao mesmo tempo que criaria incentivos para que os indivíduos assumissem riscos, iniciassem negócios, mudassem de emprego, regressassem à escola ou tentassem uma nova carreira. Outra ideia é o imposto de renda negativo, em que o Estado daria dinheiro aos pobres da mesma forma que tributaria os ricos; mas Bill Gates iria taxar robôs e alguns economistas pensam que a solução reside na criação de mais empregos pelos governos.

O trabalho dos médicos está se transformando em algo completamente diferente do que antes. Em teoria, algumas das suas tarefas serão assumidas pela IA e terão mais tempo para outras – mais tempo para lidar com os pacientes com verdadeiro cuidado e paciência.

Apesar das promessas, vários especialistas expressaram receios de que a IA tomasse os seus empregos e destruísse a profissão. Dizem que a arte da medicina, o processo criativo de compreender a singularidade de cada paciente e adaptar os tratamentos de acordo com as necessidades que surgem, bem como o método de processamento de dados de elevado valor acrescentado, encontrar a resposta certa e tratar os pacientes em conformidade, podem desaparecer devido às novas tecnologias. Naturalmente, os maiores receios vêm de áreas onde a aprendizagem profunda já está presente e produz resultados incríveis: processamento de linguagem natural e visão computacional. Conforme descrito acima, ambos apresentam conquistas alucinantes em imagens e diagnósticos médicos em termos de precisão e eficiência.

Bradley Erickson, diretor do Laboratório de Informática em Radiologia da Mayo Clinic, disse que parte do entusiasmo que ouvimos de alguns especialistas em aprendizado de máquina e aprendizado profundo dizem que a IA substituiria os radiologistas significa que eles estão olhando para os radiologistas da mesma forma que olham para fotos. "Isso seria eu dizendo, enquanto olho para os programadores, que tudo o que eles fazem é digitar, para que possamos substituir um programador por um sistema de reconhecimento de fala", acrescentou. Langlotz comparou a situação à do piloto automático na aviação. A inovação não substituiu os pilotos reais, mas ampliou suas tarefas. Em voos muito longos, é útil ligar o piloto automático, mas eles são inúteis quando você precisa de um julgamento rápido. Assim, a combinação de humanos e máquinas é a solução vencedora. E será o mesmo na saúde.

Assim, pode-se concordar plenamente com Langlotz quando ele diz que "a IA não substituirá os radiologistas. No entanto, os radiologistas que usam IA substituirão aqueles que não o fazem". Além disso, esta declaração enigmática também poderia aplicar-se a oftalmologistas, neurologistas, clínicos gerais, dentistas, enfermeiros ou administradores. Por isso podemos reformular a frase acima para articular a mensagem central da equipe do The Medical Futurist da forma mais sucinta possível:

A Inteligência Artificial não substituirá os médicos. Os profissionais médicos que usam IA substituirão aqueles que não o fazem.

Nos próximos anos, a Inteligência Artificial certamente transformará a medicina tal como a conhecemos. Encontrará novos medicamentos, novos tratamentos e terapias através de combinações que os médicos humanos, as empresas farmacêuticas ou os inovadores médicos nunca imaginariam. Em todos os setores que vimos, a adoção da IA acelerou rapidamente e, de acordo com este relatório da McKinsey, a saúde não é uma exceção.

Como não será limitada pelos caminhos e padrões de pensamento tradicionais utilizados durante séculos na medicina, a Inteligência Artificial poderá apresentar soluções inteiramente novas – sem dizer aos humanos como as descobriu. Da mesma forma que o supercomputador de O Guia do Mochileiro das Galáxias, de Douglas Adams, onde a resposta definitiva para a vida, o universo e, na verdade, tudo o mais é 42, algoritmos inteligentes podem simplesmente cuspir respostas a perguntas sem explicação. A verdadeira arte da medicina será a tarefa de descobrir o caminho lógico de como a IA chegou a uma determinada solução. Isso certamente exigirá os altos níveis de criatividade, resolução de problemas e habilidades cognitivas que a comunidade médica possui.

Assim, temos certeza de que a IA não vai nos substituir, será o estetoscópio do século 21. A saúde digital nos fornecerá mais dados de saúde do que nunca. A Inteligência Artificial nos ajudará a analisá-la para encontrar novas formas de tratar doenças, reduzir tarefas administrativas, agilizar as práticas médicas e otimizar os horários de médicos e pacientes. As soluções de IA serão ferramentas nas mãos dos médicos – e não o contrário. O cuidado compassivo, a empatia, a criatividade, a resolução de problemas e a profunda ligação humana continuarão sempre a ser o terreno dos médicos. Mas será aprimorado pela IA.

Se a abraçarmos, a verdadeira arte da medicina começa com a era da Inteligência Artificial.

A IA não substituirá os médicos.

No entanto, os médicos que usarem IA substituirão aqueles que não gostam.

Uma Rede Social Exclusiva para Médicos, que oferece Informação, Tecnologia, Cursos e Benefícios.

Leia mais em metadoctors.com

Entre em contato com a equipe metaDoctors no LinkedIn.

Siga o metaDoctors no Facebook ou Instagram.

Inscreva-se no canal metaDoctors do YouTube para ter acesso a todos os vídeos sobre tendências e tecnologias.